cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351397 Sum of the exponents in the prime factorizations of the prime power divisors of n.

Original entry on oeis.org

0, 1, 1, 3, 1, 2, 1, 6, 3, 2, 1, 4, 1, 2, 2, 10, 1, 4, 1, 4, 2, 2, 1, 7, 3, 2, 6, 4, 1, 3, 1, 15, 2, 2, 2, 6, 1, 2, 2, 7, 1, 3, 1, 4, 4, 2, 1, 11, 3, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 5, 1, 2, 4, 21, 2, 3, 1, 4, 2, 3, 1, 9, 1, 2, 4, 4, 2, 3, 1, 11, 10, 2, 1, 5, 2, 2, 2, 7, 1, 5, 2, 4, 2
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 09 2022

Keywords

Comments

a(n) is the sum of all the k's in the divisors of n of the form p^k, where p is prime and k>=1.

Examples

			a(8) = 6; The prime power divisors of 8 are 2,4,8 with prime factorizations 2^1,2^2,2^3 and the sum of the exponents in their prime factorizations is 1+2+3 = 6.
a(20) = 4; The prime power divisors of 20 are 2,4,5 with prime factorizations 2^1,2^2,5^1 and the sum of the exponents in each of their prime factorizations is 1+2+1 = 5.
		

Crossrefs

Cf. A001221 (omega), A001222 (Omega), A077761, A246655.

Programs

  • Mathematica
    f[p_, e_] := e*(e + 1)/2; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 10 2022 *)
  • PARI
    a(n) = sumdiv(n, d, my(x); if (x=isprimepower(d), x)); \\ Michel Marcus, Feb 10 2022

Formula

a(n) = Sum_{d|n} Omega(d) * [omega(d) = 1].
Additive with a(p^e) = e*(e+1)/2. - Amiram Eldar, Feb 10 2022
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = Sum_{k>=2} (k * P(k)) = 2.14822166379843041578..., where P(s) is the prime zeta function. - Amiram Eldar, Oct 05 2023
From Ridouane Oudra, Aug 16 2024: (Start)
a(n) = (A001222(n) + A090885(n))/2 ;
a(n) = Sum_{d|n} A100995(d). (End)