cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A099286 Decimal expansion of the error function at 1.

Original entry on oeis.org

8, 4, 2, 7, 0, 0, 7, 9, 2, 9, 4, 9, 7, 1, 4, 8, 6, 9, 3, 4, 1, 2, 2, 0, 6, 3, 5, 0, 8, 2, 6, 0, 9, 2, 5, 9, 2, 9, 6, 0, 6, 6, 9, 9, 7, 9, 6, 6, 3, 0, 2, 9, 0, 8, 4, 5, 9, 9, 3, 7, 8, 9, 7, 8, 3, 4, 7, 1, 7, 2, 5, 4, 0, 9, 6, 0, 1, 0, 8, 4, 1, 2, 6, 1, 9, 8, 3, 3, 2, 5, 3, 4, 8, 1, 4, 4, 8, 8, 8, 4, 5, 4, 1, 5, 8
Offset: 0

Views

Author

Robert G. Wilson v, Oct 08 2004

Keywords

Examples

			0.84270079294971486934122063508260925929606699796630290845993789783...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[ Erf[1], 10, 105][[1]]
  • PARI
    1 - erfc(1)

Formula

Equals 1-A099287.
Equals (1/e) Sum_{n >= 0} (1/(n/2)!) - 1. - Jean-François Alcover, Jun 14 2020
From Amiram Eldar, Jul 22 2020: (Start)
Equals (2/sqrt(Pi)) * Integral_{x=0..1} exp(-x^2) dx.
Equals (2/sqrt(Pi)) * Sum_{k>=0} (-1)^k/(k! * (2*k + 1)) = (2/sqrt(Pi)) * Sum_{k>=0} (-1)^k/A007680(k).
Equals (1/e) * Sum_{k>=1} 1/Gamma(k + 1/2). (End)

A351401 Decimal expansion of erfi(1)/e, where erfi is the imaginary error function.

Original entry on oeis.org

6, 0, 7, 1, 5, 7, 7, 0, 5, 8, 4, 1, 3, 9, 3, 7, 2, 9, 1, 1, 5, 0, 3, 8, 2, 3, 5, 8, 0, 0, 7, 4, 4, 9, 2, 1, 1, 6, 1, 2, 2, 0, 9, 2, 8, 6, 6, 5, 1, 5, 6, 9, 1, 5, 9, 1, 6, 9, 4, 4, 1, 9, 1, 9, 2, 7, 2, 0, 8, 7, 6, 9, 4, 9, 2, 0, 2, 8, 1, 1, 8, 2, 0, 1, 6, 3, 9, 1, 3, 1, 6, 5, 2, 6, 3, 3, 2, 6, 8, 5, 4, 8, 1, 0, 4
Offset: 0

Views

Author

Amiram Eldar, Feb 10 2022

Keywords

Comments

The alternating sum of reciprocals of the factorials of the positive half-integers.

Examples

			0.60715770584139372911503823580074492116122092866515...
		

References

  • Rudolf Gorenflo, Anatoly A. Kilbas, Francesco Mainardi, and Sergei Rogosin, Mittag-Leffler Functions, Related Topics and Applications, New York, NY: Springer, 2020. See p. 94, eq. (4.12.9.6).
  • Constantin Milici, Gheorghe Drăgănescu, and J. Tenreiro Machado, Fractional Differential Equations, Introduction to Fractional Differential Equations, Springer, Cham, 2019. See p. 12, eq. (1.9).

Crossrefs

Programs

  • Maple
    evalf(exp(-1)*erfi(1), 120);  # Alois P. Heinz, Feb 10 2022
  • Mathematica
    RealDigits[Erfi[1]/E, 10, 100][[1]]
  • PARI
    real(-I*(1.0-erfc(I)))/exp(1) \\ Michel Marcus, Feb 10 2022

Formula

Equals Sum_{k>=0} (-1)^k/(k + 1/2)! = Sum_{k>=1} (-1)^(k+1)/Gamma(k + 1/2).
Equals E_{1, 3/2}(-1), where E_{a,b}(z) is the two-parameter Mittag-Leffler function.
Equals (-1/sqrt(Pi)) * Sum_{k>=1} (-2)^k/(2*k-1)!!.
Equals A068985 * A099288.
Showing 1-2 of 2 results.