cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351405 a(1) = 1; a(n+1) = Sum_{d|n} 2^(n/d - 1) * a(d).

Original entry on oeis.org

1, 1, 3, 7, 17, 33, 75, 139, 289, 557, 1119, 2143, 4341, 8437, 16843, 33343, 66573, 132109, 264243, 526387, 1052549, 2101617, 4202031, 8396335, 16792705, 33570193, 67137403, 134248191, 268492033, 536927489, 1073853307, 2147595131, 4295180241, 8590155085
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 10 2022

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=1, 1,
          add(2^((n-1)/d-1)*a(d), d=numtheory[divisors](n-1)))
        end:
    seq(a(n), n=1..34);  # Alois P. Heinz, Feb 10 2022
  • Mathematica
    a[1] = 1; a[n_] := a[n] = Sum[2^((n - 1)/d - 1) a[d], {d, Divisors[n - 1]}]; Table[a[n], {n, 1, 34}]
    nmax = 34; A[] = 0; Do[A[x] = x (1 + Sum[2^(k - 1) A[x^k], {k, 1, nmax}]) + O[x]^(nmax + 1) //Normal, nmax + 1]; CoefficientList[A[x], x] // Rest

Formula

G.f. A(x) satisfies: A(x) = x * ( 1 + A(x) + 2 * A(x^2) + 4 * A(x^3) + ... + 2^(k-1) * A(x^k) + ... ).
G.f.: x * ( 1 + Sum_{n>=1} a(n) * x^n / (1 - 2 * x^n) ).
a(n) ~ 2^(n-1). - Vaclav Kotesovec, Feb 18 2022