A351413 a(n) is the maximum number of stable matchings in the Latin Stable Marriage Problem of order n.
1, 2, 3, 10, 9, 48, 61
Offset: 1
Examples
Maximal instance of order 2 with 2 stable matchings: 12 21 Maximal instance of order 3 with 3 stable matchings: 123 231 312 Maximal instance of order 4 with 10 stable matchings (group C2xC2): 1234 2143 3412 4321 Maximal instance of order 5 with 9 stable matchings: 12345 21453 34512 45231 53124 Maximal instance of order 6 with 48 stable matchings (Dihedral group): 123456 214365 365214 456123 541632 632541 Maximal instance of order 7 with 61 stable matchings: 1234567 2316745 3125476 4657312 5743621 6471253 7562134
References
- C. Converse, Lower bounds for the maximum number of stable pairings for the general marriage problem based on the latin marriage problem, Ph. D. Thesis, Claremont Graduate School, Claremont, CA (1992) [Examples are from 69-70].
Links
- A. T. Benjamin, C. Converse, and H. A. Krieger, Note. How do I marry thee? Let me count the ways, Discrete Appl. Math. 59 (1995) 285-292.
- Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, Sequences of the Stable Matching Problem, arXiv:2201.00645 [math.HO], 2021 [Sections 3.7 and 4.2].
- J. S. Hwang, Complete stable marriages and systems of I-M preferences, In: McAvaney K.L. (eds) Combinatorial Mathematics VIII. Lecture Notes in Mathematics, vol 884. Springer, Berlin, Heidelberg (1981) 49-63.
- E. G. Thurber, Concerning the maximum number of stable matchings in the stable marriage problem, Discrete Math., 248 (2002), 195-219.
Comments