A351429 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. 1/(1 + f^k(x)), where f(x) = exp(x) - 1.
1, 1, -1, 1, -1, 2, 1, -1, 1, -6, 1, -1, 0, -1, 24, 1, -1, -1, 1, 1, -120, 1, -1, -2, 0, 1, -1, 720, 1, -1, -3, -4, 6, -2, 1, -5040, 1, -1, -4, -11, -2, 32, -9, -1, 40320, 1, -1, -5, -21, -41, 76, 115, -9, 1, -362880, 1, -1, -6, -34, -129, -75, 953, 172, 50, -1, 3628800
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, 1, ... -1, -1, -1, -1, -1, -1, -1, ... 2, 1, 0, -1, -2, -3, -4, ... -6, -1, 1, 0, -4, -11, -21, ... 24, 1, 1, 6, -2, -41, -129, ... -120, -1, -2, 32, 76, -75, -806, ... 720, 1, -9, 115, 953, 1540, -3334, ...
Crossrefs
Programs
-
Maple
A:= (n, k)-> n!*(g->coeff(series(1/(1+(g@@k)(x)), x, n+1), x, n))(x->exp(x)-1): seq(seq(A(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Feb 11 2022
-
Mathematica
T[n_, 0] := (-1)^n*n!; T[n_, k_] := T[n, k] = Sum[StirlingS2[n, j]*T[j, k - 1], {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Feb 11 2022 *)
-
PARI
T(n, k) = if(k==0, (-1)^n*n!, sum(j=0, n, stirling(n, j, 2)*T(j, k-1)));
Formula
T(n,k) = Sum_{j=0..n} Stirling2(n,j) * T(j,k-1), k>1, T(n,0) = (-1)^n * n!.