A357269
Maximum number of stable matchings in the stable marriage problem of order n.
Original entry on oeis.org
1, 2, 3, 10, 16
Offset: 1
- C. Converse, Lower bounds for the maximum number of stable pairings for the general marriage problem based on the latin marriage problem, Ph. D. Thesis, Claremont Graduate School, Claremont, CA (1992).
- D. R. Eilers, "The Maximum Number of Stable Matchings in the Stable Marriage Problem of Order 5 is 16". In preparation.
- D. Gusfield and R. W. Irving, The Stable Marriage Problem: Structure and Algorithms. MIT Press, 1989, (Open Problem #1).
- A. T. Benjamin, C. Converse, and H. A. Krieger, Note. How do I marry thee? Let me count the ways, Discrete Appl. Math. 59 (1995) 285-292.
- Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, Sequences of the Stable Matching Problem, arXiv:2201.00645 [math.HO], 2021, [Section 5, Distribution for the number of stable matchings].
- D. E. Knuth, Mariages Stables, Presses Univ. de Montréal, 1976 (Research Problem #5).
- E. G. Thurber, Concerning the maximum number of stable matchings in the stable marriage problem, Discrete Math., 248 (2002), 195-219.
Cf.
A351409 (total number of reduced instances).
A368419
a(n) is the number of reduced stable marriage problem instances of order 5 that generate 16 - n possible stable matchings.
Original entry on oeis.org
176130, 498320, 19193670, 143035180, 348655065
Offset: 0
- D. R. Eilers, "The Maximum Number of Stable Matchings in the Stable Marriage Problem of Order 5 is 16". In preparation.
- Dr Jason Wilson, Director, Biola Quantitative Consulting Center, "Stable Marriage Problem Project Report", crediting team of Annika Miller, Henry Lin, and Joseph Liu; December 22, 2023.
- A. T. Benjamin, C. Converse, and H. A. Krieger, Note. How do I marry thee? Let me count the ways, Discrete Appl. Math. 59 (1995) 285-292.
- Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, Sequences of the Stable Matching Problem, arXiv:2201.00645 [math.HO], 2021, [Section 5, Distribution for the number of stable matchings].
- D. E. Knuth, Mariages Stables, Presses Univ. de Montréal, 1976 (Research Problem #5).
- David F. Manlove, Algorithmics of Matching Under Preferences, World Scientific (2013) [Section 2.2.2].
- E. G. Thurber, Concerning the maximum number of stable matchings in the stable marriage problem, Discrete Math., 248 (2002), 195-219.
Cf.
A351430 (order 4, in reverse order).
A368433
a(n) is the number of reduced instances in the stable marriage problem of order n that generate the maximum possible number of stable matchings.
Original entry on oeis.org
1, 1, 91, 1, 176130
Offset: 1
A351413
a(n) is the maximum number of stable matchings in the Latin Stable Marriage Problem of order n.
Original entry on oeis.org
1, 2, 3, 10, 9, 48, 61
Offset: 1
Maximal instance of order 2 with 2 stable matchings:
12
21
Maximal instance of order 3 with 3 stable matchings:
123
231
312
Maximal instance of order 4 with 10 stable matchings (group C2xC2):
1234
2143
3412
4321
Maximal instance of order 5 with 9 stable matchings:
12345
21453
34512
45231
53124
Maximal instance of order 6 with 48 stable matchings (Dihedral group):
123456
214365
365214
456123
541632
632541
Maximal instance of order 7 with 61 stable matchings:
1234567
2316745
3125476
4657312
5743621
6471253
7562134
- C. Converse, Lower bounds for the maximum number of stable pairings for the general marriage problem based on the latin marriage problem, Ph. D. Thesis, Claremont Graduate School, Claremont, CA (1992) [Examples are from 69-70].
- A. T. Benjamin, C. Converse, and H. A. Krieger, Note. How do I marry thee? Let me count the ways, Discrete Appl. Math. 59 (1995) 285-292.
- Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, Sequences of the Stable Matching Problem, arXiv:2201.00645 [math.HO], 2021 [Sections 3.7 and 4.2].
- J. S. Hwang, Complete stable marriages and systems of I-M preferences, In: McAvaney K.L. (eds) Combinatorial Mathematics VIII. Lecture Notes in Mathematics, vol 884. Springer, Berlin, Heidelberg (1981) 49-63.
- E. G. Thurber, Concerning the maximum number of stable matchings in the stable marriage problem, Discrete Math., 248 (2002), 195-219.
A369597
a(n) is the number of reduced stable marriage problem instances of order 3 that generate n possible stable matchings.
Original entry on oeis.org
Cf.
A351409 (number of reduced instances of order n).
Cf.
A010790 (reduction factor for order n).
Showing 1-5 of 5 results.
Comments