cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A351465 Let f be multiplicative with f(prime(k)^e) = k + e*i for any k, e > 0 (where i denotes the imaginary unit); a(n) is the imaginary part of f(n). See A351464 for the real part.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 3, 2, 4, 1, 5, 1, 5, 5, 4, 1, 4, 1, 7, 6, 6, 1, 7, 2, 7, 3, 9, 1, 10, 1, 5, 7, 8, 7, 6, 1, 9, 8, 10, 1, 13, 1, 11, 8, 10, 1, 9, 2, 5, 9, 13, 1, 5, 8, 13, 10, 11, 1, 15, 1, 12, 10, 6, 9, 16, 1, 15, 11, 18, 1, 8, 1, 13, 7, 17, 9, 19, 1, 13
Offset: 1

Views

Author

Rémy Sigrist, Feb 11 2022

Keywords

Examples

			For n = 42:
- 42 = 2 * 3 * 7 = prime(1)^1 * prime(2)^1 * prime(4)^1,
- f(42) = (1+i) * (2+i) * (4+i) = 1 + 13*i,
- and a(42) = 13.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; uses numtheory;
          mul(pi(i[1])+i[2]*I, i=ifactors(n)[2])
        end:
    a:= n-> Im(b(n)):
    seq(a(n), n=1..80);  # Alois P. Heinz, Feb 15 2022
  • Mathematica
    f[p_, e_] := PrimePi[p] + e*I; a[1] = 0; a[n_] := Im[Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Feb 15 2022 *)
  • PARI
    a(n) = { my (f=factor(n), p=f[,1]~, e=f[,2]~); imag(prod (k=1, #p, primepi(p[k]) + I*e[k])) }

A351475 Multiplicative with a(prime(k)^e) = k^2 + e^2 for any k, e > 0.

Original entry on oeis.org

1, 2, 5, 5, 10, 10, 17, 10, 8, 20, 26, 25, 37, 34, 50, 17, 50, 16, 65, 50, 85, 52, 82, 50, 13, 74, 13, 85, 101, 100, 122, 26, 130, 100, 170, 40, 145, 130, 185, 100, 170, 170, 197, 130, 80, 164, 226, 85, 20, 26, 250, 185, 257, 26, 260, 170, 325, 202, 290, 250
Offset: 1

Views

Author

Rémy Sigrist, Feb 12 2022

Keywords

Comments

This sequence gives the norm of the function f defined in A351464-A351465.

Examples

			For n = 42:
- 42 = 2 * 3 * 7 = prime(1)^1 * prime(2)^1 * prime(4)^1,
- a(42) = (1^2 + 1^2) * (2^2 + 1^2) * (4^2 + 1^2) = 170.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; uses numtheory;
          mul(pi(i[1])^2+i[2]^2, i=ifactors(n)[2])
        end:
    seq(a(n), n=1..60);  # Alois P. Heinz, Feb 15 2022
  • Mathematica
    f[p_, e_] := PrimePi[p]^2 + e^2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 15 2022 *)
  • PARI
    a(n) = { my (f=factor(n), p=f[, 1]~, e=f[, 2]~); prod (k=1, #p, primepi(p[k])^2 + e[k]^2) }

Formula

a(n) = A351464(n)^2 + A351465(n)^2.
Showing 1-2 of 2 results.