A351464 Let f be multiplicative with f(prime(k)^e) = k + e*i for any k, e > 0 (where i denotes the imaginary unit); a(n) is the real part of f(n). See A351465 for the imaginary part.
1, 1, 2, 1, 3, 1, 4, 1, 2, 2, 5, 0, 6, 3, 5, 1, 7, 0, 8, 1, 7, 4, 9, -1, 3, 5, 2, 2, 10, 0, 11, 1, 9, 6, 11, -2, 12, 7, 11, 0, 13, 1, 14, 3, 4, 8, 15, -2, 4, 1, 13, 4, 16, -1, 14, 1, 15, 9, 17, -5, 18, 10, 6, 1, 17, 2, 19, 5, 17, 4, 20, -4, 21, 11, 4, 6, 19, 3
Offset: 1
Examples
For n = 42: - 42 = 2 * 3 * 7 = prime(1)^1 * prime(2)^1 * prime(4)^1, - f(42) = (1+i) * (2+i) * (4+i) = 1 + 13*i, - and a(42) = 1.
Programs
-
Maple
b:= proc(n) option remember; uses numtheory; mul(pi(i[1])+i[2]*I, i=ifactors(n)[2]) end: a:= n-> Re(b(n)): seq(a(n), n=1..78); # Alois P. Heinz, Feb 15 2022
-
Mathematica
f[p_, e_] := PrimePi[p] + e*I; a[1] = 1; a[n_] := Re[Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Feb 15 2022 *)
-
PARI
a(n) = { my (f=factor(n), p=f[,1]~, e=f[,2]~); real(prod (k=1, #p, primepi(p[k]) + I*e[k])) }
Comments