cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A351464 Let f be multiplicative with f(prime(k)^e) = k + e*i for any k, e > 0 (where i denotes the imaginary unit); a(n) is the real part of f(n). See A351465 for the imaginary part.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 4, 1, 2, 2, 5, 0, 6, 3, 5, 1, 7, 0, 8, 1, 7, 4, 9, -1, 3, 5, 2, 2, 10, 0, 11, 1, 9, 6, 11, -2, 12, 7, 11, 0, 13, 1, 14, 3, 4, 8, 15, -2, 4, 1, 13, 4, 16, -1, 14, 1, 15, 9, 17, -5, 18, 10, 6, 1, 17, 2, 19, 5, 17, 4, 20, -4, 21, 11, 4, 6, 19, 3
Offset: 1

Views

Author

Rémy Sigrist, Feb 11 2022

Keywords

Comments

Apparently, each integer (from Z) appears in this sequence.

Examples

			For n = 42:
- 42 = 2 * 3 * 7 = prime(1)^1 * prime(2)^1 * prime(4)^1,
- f(42) = (1+i) * (2+i) * (4+i) = 1 + 13*i,
- and a(42) = 1.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; uses numtheory;
          mul(pi(i[1])+i[2]*I, i=ifactors(n)[2])
        end:
    a:= n-> Re(b(n)):
    seq(a(n), n=1..78);  # Alois P. Heinz, Feb 15 2022
  • Mathematica
    f[p_, e_] := PrimePi[p] + e*I; a[1] = 1; a[n_] := Re[Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Feb 15 2022 *)
  • PARI
    a(n) = { my (f=factor(n), p=f[,1]~, e=f[,2]~); real(prod (k=1, #p, primepi(p[k]) + I*e[k])) }

A351465 Let f be multiplicative with f(prime(k)^e) = k + e*i for any k, e > 0 (where i denotes the imaginary unit); a(n) is the imaginary part of f(n). See A351464 for the real part.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 3, 2, 4, 1, 5, 1, 5, 5, 4, 1, 4, 1, 7, 6, 6, 1, 7, 2, 7, 3, 9, 1, 10, 1, 5, 7, 8, 7, 6, 1, 9, 8, 10, 1, 13, 1, 11, 8, 10, 1, 9, 2, 5, 9, 13, 1, 5, 8, 13, 10, 11, 1, 15, 1, 12, 10, 6, 9, 16, 1, 15, 11, 18, 1, 8, 1, 13, 7, 17, 9, 19, 1, 13
Offset: 1

Views

Author

Rémy Sigrist, Feb 11 2022

Keywords

Examples

			For n = 42:
- 42 = 2 * 3 * 7 = prime(1)^1 * prime(2)^1 * prime(4)^1,
- f(42) = (1+i) * (2+i) * (4+i) = 1 + 13*i,
- and a(42) = 13.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; uses numtheory;
          mul(pi(i[1])+i[2]*I, i=ifactors(n)[2])
        end:
    a:= n-> Im(b(n)):
    seq(a(n), n=1..80);  # Alois P. Heinz, Feb 15 2022
  • Mathematica
    f[p_, e_] := PrimePi[p] + e*I; a[1] = 0; a[n_] := Im[Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Feb 15 2022 *)
  • PARI
    a(n) = { my (f=factor(n), p=f[,1]~, e=f[,2]~); imag(prod (k=1, #p, primepi(p[k]) + I*e[k])) }
Showing 1-2 of 2 results.