cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351476 If F is the Fermat point of a triangle ABC with A < B < C < 2*Pi/3, where AB, BC, CA, FA, FB and FC are all positive integers, then, this sequence gives the sum FA + FB + FC when gcd(a, b, c) = A351477(n).

Original entry on oeis.org

784, 1029, 6845, 80089, 24843, 109561, 109561, 5239, 24037, 47045, 27735, 6760, 477481, 21904, 57967, 186245, 365403, 20280, 400445, 356168, 159953, 190463, 718205, 836405, 11809, 178771, 1432443, 1127307, 22984, 34295, 22477, 157339, 6723649, 44403, 974408
Offset: 1

Views

Author

Bernard Schott, Feb 12 2022

Keywords

Comments

Inspired by Project Euler, Problem 143 (see link) where such a triangle is called a "Torricelli triangle".
Differs from A336329 where ABC is a primitive integer-sided triangle with A < B < C < 2*Pi/3 and only FA+FB+FC is an integer; in fact, terms of A336329 are the sum of 3 fractions of the form FA = p/t, FB = q/t, FC = r/t but (p+q+r)/t is an integer. Here, FA, FB and FC are all integers and the sums FA+FB+FC are displayed according to same order as in A336329. The corresponding common denominators t of the fractions (p/t, q/t, r/t) are in A351477.
If FA + FB + FC = d, then we have this "beautifully symmetric equation" between a, b, c and d (see Martin Gardner):
3*(a^4 + b^4 + c^4 + d^4) = (a^2 + b^2 + c^2 + d^2)^2.
=> d = sqrt(((a^2 + b^2 + c^2)/2) + (1/2) * sqrt(6*(a^2*b^2 + b^2*c^2 + c^2*a^2) - 3*(a^4 + b^4 + c^4))).

Examples

			a(1) = FA + FB + FC = 325 + 264 + 195 = 784, corresponding to first triple (399, 455, 511) whose gcd = 7.
a(6) = FA + FB + FC = 70720 + 34200 + 4641 = 109561, corresponding to triple (36741, 73151, 92680) whose gcd = 331.
a(7) = FA + FB + FC = 91200 + 12376 + 8985 = 109561, corresponding to triple (16219, 94335, 97976) whose gcd = 331.
		

References

  • Martin Gardner, Mathematical Circus, Elegant triangles, First Vintage Books Edition, 1979, p. 65.

Crossrefs

Programs

  • PARI
    lista(nn) = {my(d); for(c=4, nn, for(b=ceil(c/sqrt(3)), c-1, for(a=1+(sqrt(4*c^2-3*b^2)-b)\2, b-1, if(gcd([a, b, c])==1 && issquare(d=6*(a^2*b^2+b^2*c^2+c^2*a^2)-3*(a^4+b^4+c^4)) && issquare(d=(a^2+b^2+c^2+sqrtint(d))/2), d = sqrtint(d); my(s = numerator(sqrtint(((2*b*c)^2 - (b^2+c^2-d^2)^2)/3)/d) + numerator(sqrtint(((2*a*b)^2 - (a^2+b^2-d^2)^2)/3)/d) + numerator(sqrtint(((2*a*c)^2 - (a^2+c^2-d^2)^2)/3)/d)); print1(s, ", ");););););} \\ Michel Marcus, Mar 02 2022

Formula

a(n) = A336329(n) * A351477(n).
If FA + FB + FC = d, then
d^2 = (1/2) * (a^2 + b^2 + c^2) + 2 * S * sqrt(3) where S = area of triangle ABC.

Extensions

More terms from Jinyuan Wang, Feb 17 2022