cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351477 a(n) is the common denominator of FA, FB and FC, where F is the Fermat point of the integer-sided triangle ABC with A < B < C < 2*Pi/3 such that FA + FB + FC = A336329(n).

Original entry on oeis.org

7, 7, 37, 283, 91, 331, 331, 13, 43, 97, 43, 13, 691, 37, 91, 193, 349, 13, 283, 211, 97, 91, 379, 409, 7, 97, 691, 613, 13, 19, 13, 91, 2593, 19, 349, 43, 1, 337, 97, 169, 37, 19, 31, 409, 3217, 67, 571, 169, 241, 43, 67, 157, 4171, 3601, 889, 1591, 811, 1, 139
Offset: 1

Views

Author

Bernard Schott, Feb 12 2022

Keywords

Comments

Inspired by Project Euler, Problem 143 (see link).
For the corresponding primitive triples, miscellaneous properties and references, see A336328.

Examples

			For 1st triple (57, 65, 73) in A336328, we get A336329(1) = FA + FB + FC = 325/7 + 264/7 + 195/7 = 112, hence a(1) = 7.
For 3rd triple (43, 147, 152) in A336328, we get A336329(3) = FA + FB + FC = 5016/37 + 1064/37 + 765/37 = 185, hence a(3) = 37.
		

Crossrefs

Cf. A336328 (primitive triples), A336329 (FA + FB + FC), A336330 (smallest side), A336331 (middle side), A336332 (largest side), A336333 (perimeter).
Cf. A351476.

Formula

a(n) = A351476(n)/A336329(n).
a(n) is the common denominator of fractions FA, FB, FC when FA = sqrt(((2*b*c)^2 - (b^2+c^2-d^2)^2)/3) / d, FB = sqrt(((2*a*c)^2 - (a^2+c^2-d^2)^2)/3) / d, FC = sqrt(((2*a*b)^2 - (a^2+b^2-d^2)^2)/3) / d, with a = (A336328(n,1), b = (A336328(n,2), c = (A336328(n,3)) and d = A336329(n) (formulas FA, FB, FC from Jinyuan Wang, Feb 17 2022).

Extensions

More terms from Jinyuan Wang, Feb 17 2022