A351476 If F is the Fermat point of a triangle ABC with A < B < C < 2*Pi/3, where AB, BC, CA, FA, FB and FC are all positive integers, then, this sequence gives the sum FA + FB + FC when gcd(a, b, c) = A351477(n).
784, 1029, 6845, 80089, 24843, 109561, 109561, 5239, 24037, 47045, 27735, 6760, 477481, 21904, 57967, 186245, 365403, 20280, 400445, 356168, 159953, 190463, 718205, 836405, 11809, 178771, 1432443, 1127307, 22984, 34295, 22477, 157339, 6723649, 44403, 974408
Offset: 1
Keywords
Examples
a(1) = FA + FB + FC = 325 + 264 + 195 = 784, corresponding to first triple (399, 455, 511) whose gcd = 7. a(6) = FA + FB + FC = 70720 + 34200 + 4641 = 109561, corresponding to triple (36741, 73151, 92680) whose gcd = 331. a(7) = FA + FB + FC = 91200 + 12376 + 8985 = 109561, corresponding to triple (16219, 94335, 97976) whose gcd = 331.
References
- Martin Gardner, Mathematical Circus, Elegant triangles, First Vintage Books Edition, 1979, p. 65.
Links
- Project Euler, Problem 143 - Investigating the Torricelli point of a triangle.
- Eric Weisstein's World of Mathematics, Fermat points.
Crossrefs
Programs
-
PARI
lista(nn) = {my(d); for(c=4, nn, for(b=ceil(c/sqrt(3)), c-1, for(a=1+(sqrt(4*c^2-3*b^2)-b)\2, b-1, if(gcd([a, b, c])==1 && issquare(d=6*(a^2*b^2+b^2*c^2+c^2*a^2)-3*(a^4+b^4+c^4)) && issquare(d=(a^2+b^2+c^2+sqrtint(d))/2), d = sqrtint(d); my(s = numerator(sqrtint(((2*b*c)^2 - (b^2+c^2-d^2)^2)/3)/d) + numerator(sqrtint(((2*a*b)^2 - (a^2+b^2-d^2)^2)/3)/d) + numerator(sqrtint(((2*a*c)^2 - (a^2+c^2-d^2)^2)/3)/d)); print1(s, ", ");););););} \\ Michel Marcus, Mar 02 2022
Formula
Extensions
More terms from Jinyuan Wang, Feb 17 2022
Comments