A351480 Decimal expansion of (611 + sqrt(73))/36.
1, 7, 2, 0, 9, 5, 5, 5, 6, 5, 9, 5, 9, 2, 1, 5, 3, 6, 4, 3, 5, 5, 1, 9, 9, 0, 2, 3, 1, 2, 8, 4, 4, 3, 6, 2, 8, 9, 8, 4, 9, 8, 4, 5, 9, 8, 1, 3, 7, 5, 9, 2, 4, 5, 0, 6, 7, 1, 9, 6, 8, 4, 7, 5, 7, 0, 4, 9, 2, 1, 2, 4, 6, 7, 2, 0, 3, 5, 3, 6, 0, 6, 6, 1, 4, 1, 1, 3, 8, 1
Offset: 2
Examples
17.2095556595921536435519902312844...
Links
- S. Yu. Orevkov, Counting lattice triangulations: Fredholm equations in combinatorics, arXiv:2201.12827 [math.CO], 2022. See Theorem 1, p. 2.
- Index entries for algebraic numbers, degree 2
Crossrefs
Programs
-
Mathematica
First[RealDigits[(611+Sqrt[73])/36,10,90]]
Formula
Equals lim_{n->oo} A082640(2, n)^(1/n).
Equals 288*x_2, where x_2 is the largest root of 5184*x^2 - 611*x + 18.