cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A351484 a(n) is the number of primitive triangulations of a 5 X n rectangle.

Original entry on oeis.org

252, 182132, 182881520, 208902766788, 260420548144996, 341816489625522032, 464476385680935656240, 645855159466371391947660, 913036902513499041820702784, 1306520849733616781789190513820, 1887591165891651253904039432371172, 2747848427721241461905176361078147168
Offset: 1

Views

Author

Stefano Spezia, Feb 12 2022

Keywords

Crossrefs

Cf. A082640 (m X n rectangle).

A351485 a(n) is the number of primitive triangulations of a 6 X n rectangle.

Original entry on oeis.org

924, 2801708, 12244184472, 61756221742966, 341816489625522032, 1999206934751133055518, 12169409954141988707186052, 76083336332947513655554918994, 484772512167266688498399632918196, 3131521959869770128138491287826065904, 20443767611927599823217291769468449488548
Offset: 1

Views

Author

Stefano Spezia, Feb 12 2022

Keywords

Crossrefs

Cf. A082640 (m X n rectangle).

A351486 a(n) is the number of primitive triangulations of a 7 X n rectangle.

Original entry on oeis.org

3432, 43936824, 839660660268, 18792896208387012, 464476385680935656240, 12169409954141988707186052, 332633840844113103751597995920, 9369363517501208819530429967280708, 269621109753732518252493257828413137272, 7880009979020501614060394747170100093057300, 233031642883906149386619647304562977586311372556
Offset: 1

Views

Author

Stefano Spezia, Feb 12 2022

Keywords

Crossrefs

Cf. A082640 (m X n rectangle).

A351487 a(n) is the number of primitive triangulations of an 8 X n rectangle.

Original entry on oeis.org

12870, 698607816, 58591381296256, 5831528022482629710, 645855159466371391947660, 76083336332947513655554918994, 9369363517501208819530429967280708, 1191064812882685539785713745400934044308, 155023302820254133629368881178138076738462112, 20527337238769032315796332007167102984745417344046
Offset: 1

Views

Author

Stefano Spezia, Feb 12 2022

Keywords

Crossrefs

Cf. A082640 (m X n rectangle).

A351488 a(n) is the number of primitive triangulations of a 9 X n rectangle.

Original entry on oeis.org

48620, 11224598424, 4140106747178292, 1835933384812941453312, 913036902513499041820702784, 484772512167266688498399632918196, 269621109753732518252493257828413137272, 155023302820254133629368881178138076738462112, 91376512409462235694151119897052344522006298310908
Offset: 1

Views

Author

Stefano Spezia, Feb 12 2022

Keywords

Crossrefs

Cf. A082640 (m X n rectangle).

A351481 Decimal expansion of log_2((611 + sqrt(73))/36)/2.

Original entry on oeis.org

2, 0, 5, 2, 5, 6, 8, 9, 7, 1, 6, 1, 2, 7, 3, 5, 6, 6, 5, 1, 0, 7, 8, 7, 1, 5, 4, 0, 4, 7, 8, 6, 5, 5, 8, 7, 1, 0, 5, 3, 8, 4, 8, 7, 6, 2, 3, 7, 1, 2, 2, 1, 4, 3, 8, 8, 9, 2, 9, 8, 0, 3, 2, 7, 7, 4, 1, 7, 9, 0, 8, 2, 0, 0, 4, 1, 2, 0, 7, 1, 0, 4, 6, 5, 9, 3, 2, 3, 6, 3
Offset: 1

Views

Author

Stefano Spezia, Feb 12 2022

Keywords

Examples

			2.052568971612735665107871540478655871...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[N[Log[2,(611+Sqrt[73])/36]/2,90]]]
  • PARI
    log((611 + sqrt(73))/36)/log(4) \\ Charles R Greathouse IV, Oct 31 2023

Formula

Equals log_2(alpha)/2, where alpha = lim_{n->oo} A082640(2, n)^(1/n).

A351482 Decimal expansion of lim_{n->oo} f(3, n)^(1/(3*n)), where f(m, n) is the number of primitive lattice triangulations of m X n rectangle.

Original entry on oeis.org

4, 2, 3, 9, 3, 6, 9, 4, 8, 1, 5, 4, 8, 0, 2, 5, 6, 7, 1, 8, 7, 7, 6, 2, 5, 7, 4, 2, 0, 4, 5, 2, 3, 5, 7, 7, 2, 1, 0, 0, 6, 9, 5, 7, 1, 1, 2, 5, 1, 7, 9, 5, 4, 9, 9, 8, 3, 0, 8, 0, 1, 6, 8, 7, 8, 3, 3, 3, 5, 8, 2, 3, 8, 2, 7, 6, 7, 2, 8, 9, 8, 7, 8, 3, 7, 0, 5, 4, 8
Offset: 1

Views

Author

Stefano Spezia, Feb 12 2022

Keywords

Examples

			4.2393694815480256718776257420452357721...
		

Crossrefs

A351483 Decimal expansion of log_2(lim_{n->oo} f(3, n)^(1/(3*n))), where f(m, n) is the number of primitive lattice triangulations of m X n rectangle.

Original entry on oeis.org

2, 0, 8, 3, 8, 4, 9, 7, 0, 9, 7, 2, 1, 0, 2, 3, 2, 0, 8, 2, 2, 4, 2, 1, 9, 2, 8, 9, 4, 9, 6, 1, 7, 0, 1, 3, 9, 6, 4, 8, 5, 1, 3, 4, 2, 3, 2, 4, 9, 5, 5, 2, 1, 3, 0, 7, 9, 9, 0, 5, 9, 9, 1, 8, 5, 5, 1, 7, 2, 9, 0, 6, 9, 2, 8, 1, 8, 0, 5, 2, 5, 1, 8, 6, 6, 5, 0, 8, 8
Offset: 1

Views

Author

Stefano Spezia, Feb 12 2022

Keywords

Examples

			2.0838497097210232082242192894961701...
		

Crossrefs

Showing 1-8 of 8 results.