A351539 Number of odd prime factors p of n such that p^(1+valuation(n,p)) divides sigma(n).
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1
Keywords
Examples
For n = 2235 = 3 * 5 * 149, sigma(2235) = 3600 = 2^4 * 3^2 * 5^2, and thus for two of the three odd prime factors of 2235, a higher power of the same prime divides sigma(2235), and therefore a(2235) = 2. This is also the least n for which a(n) > 1.
Links
Programs
-
Mathematica
{0}~Join~Table[Function[m, Count[DeleteCases[FactorInteger[n][[All, 1]], 2], ?(Mod[m, #^(1 + IntegerExponent[n, #])] == 0 &)]][DivisorSigma[1, n]], {n, 2, 120}] (* _Michael De Vlieger, Feb 16 2022 *)
-
PARI
A351539(n) = { my(f=factor(n),s=sigma(n)); sum(k=1,#f~,(f[k,1]%2)&&(0==(s%(f[k,1]^(1+f[k,2]))))); };