cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A351549 Numbers k for which k * gcd(sigma(k), A019565(k)) is equal to sigma(k) * gcd(k, A019565(k)).

Original entry on oeis.org

1, 1456, 15480, 114660, 2244600, 3894768, 25108200, 27052704, 65021040, 112402080, 1973921400
Offset: 1

Views

Author

Antti Karttunen, Feb 19 2022

Keywords

Comments

Numbers k such that their abundancy index [sigma(k)/k] is equal to A351557(k)/A351556(k).
Question: If the above ratio is neither 1 nor 2, must it then be > 2? Are all even terms abundant?
a(12) > 2281701376 if it exists.

Crossrefs

Programs

  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    isA351549(n) = { my(s=sigma(n), z=A019565(n)); (n*gcd(s,z))==(s*gcd(n,z)); };

A351559 a(n) = A048675(gcd(sigma(n), A019565(n))).

Original entry on oeis.org

0, 2, 1, 0, 1, 2, 1, 0, 0, 2, 3, 8, 9, 2, 3, 0, 1, 2, 1, 0, 1, 2, 3, 0, 0, 10, 1, 8, 5, 2, 1, 0, 1, 2, 3, 32, 1, 6, 1, 0, 9, 2, 1, 8, 33, 2, 3, 0, 0, 2, 3, 0, 1, 6, 3, 0, 1, 2, 3, 8, 1, 2, 33, 0, 1, 2, 65, 0, 1, 2, 3, 0, 1, 2, 1, 12, 1, 10, 5, 0, 16, 2, 3, 0, 1, 18, 7, 0, 1, 2, 9, 8, 1, 2, 7, 0, 1, 2, 35, 0, 65, 2, 33
Offset: 1

Views

Author

Antti Karttunen, Feb 19 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[If[# == 1, 0, Total[#2*2^PrimePi[#1] & @@@ FactorInteger[#]]/2] &@ GCD[DivisorSigma[1, n], Times @@ Prime@ Flatten@ Position[Reverse@ IntegerDigits[n, 2], 1]], {n, 103}] (* Michael De Vlieger, Feb 20 2022 *)
  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; };
    A351559(n) = A048675(gcd(sigma(n), A019565(n)));

Formula

a(n) = A048675(A351557(n)) = A048675(gcd(sigma(n), A019565(n))).
a(n) = n AND A351560(n), where AND is bitwise-and, A004198.

A351556 a(n) = gcd(n, A019565(n)).

Original entry on oeis.org

1, 1, 1, 3, 1, 5, 3, 1, 1, 1, 1, 1, 1, 1, 7, 15, 1, 1, 3, 1, 5, 1, 11, 1, 1, 1, 1, 3, 7, 1, 15, 1, 1, 1, 1, 1, 1, 1, 1, 39, 1, 1, 21, 1, 1, 5, 1, 1, 1, 1, 1, 3, 13, 1, 3, 55, 7, 1, 1, 1, 5, 1, 1, 21, 1, 1, 3, 1, 17, 1, 5, 1, 1, 1, 1, 3, 1, 7, 3, 1, 1, 1, 1, 1, 1, 85, 1, 3, 11, 1, 3, 7, 1, 1, 1, 5, 1, 1, 1, 3, 5, 1, 51, 1, 13, 7
Offset: 0

Views

Author

Antti Karttunen, Feb 19 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[GCD[n, Times @@ Prime@ Flatten@ Position[Reverse@ IntegerDigits[n, 2], 1]], {n, 0, 105}] (* Michael De Vlieger, Feb 20 2022 *)
  • PARI
    A019565(n) = { my(m=1, p=1); while(n>0, p = nextprime(1+p); if(n%2, m *= p); n >>= 1); (m); };
    A351556(n) = gcd(n, A019565(n));

Formula

a(n) = gcd(n, A019565(n)) = gcd(A007947(n), A019565(n)).
a(n) = A007947(a(n)).
a(n) = A019565(A351558(n)).
Showing 1-3 of 3 results.