cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351568 Sum of the divisors of the largest unitary divisor of n that is a square.

Original entry on oeis.org

1, 1, 1, 7, 1, 1, 1, 1, 13, 1, 1, 7, 1, 1, 1, 31, 1, 13, 1, 7, 1, 1, 1, 1, 31, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 91, 1, 1, 1, 1, 1, 1, 1, 7, 13, 1, 1, 31, 57, 31, 1, 7, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 13, 127, 1, 1, 1, 7, 1, 1, 1, 13, 1, 1, 31, 7, 1, 1, 1, 31, 121, 1, 1, 7, 1, 1, 1, 1, 1, 13, 1, 7, 1, 1, 1, 1, 1, 57, 13
Offset: 1

Views

Author

Antti Karttunen, Feb 23 2022

Keywords

Comments

Obviously, all terms are odd.

Crossrefs

Cf. A000203, A002117, A350388, A351569, A351570, A351575 (positions of primes).

Programs

  • Mathematica
    f[p_, e_] := If[EvenQ[e], (p^(e + 1) - 1)/(p - 1), 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 23 2022 *)
  • PARI
    A350388(n) = { my(m=1, f=factor(n)); for(k=1,#f~,if(0==(f[k,2]%2), m *= (f[k,1]^f[k,2]))); (m); };
    A351568(n) = sigma(A350388(n));
    
  • Python
    from math import prod
    from sympy import factorint
    def A351568(n): return prod(1 if e % 2 else (p**(e+1)-1)//(p-1) for p, e in factorint(n).items()) # Chai Wah Wu, Feb 24 2022

Formula

Multiplicative with a(p^e) = (p^(e+1)-1)/(p-1) if e is even and 1 otherwise.
a(n) = A000203(A350388(n)).
a(n) = A000203(n) / A351569(n).
Sum_{k=1..n} a(k) ~ c * n^(3/2), where c = (zeta(3)/3) * Product_{p prime} (1 + 1/p^(3/2) + 1/p^2 - 1/p^(5/2)) = 1.008259499413... . - Amiram Eldar, Nov 20 2022
Dirichlet g.f.: zeta(2*s) * zeta(2*s-2) * Product_{p prime} (1 + 1/p^s + 1/p^(2*s-1) - 1/p^(3*s-2)). - Amiram Eldar, Sep 03 2023