cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351582 Decimal expansion of the root of cot(Pi/(s+1)) - csc(Pi/s).

Original entry on oeis.org

4, 4, 9, 5, 4, 7, 4, 7, 8, 8, 7, 5, 2, 8, 8, 9, 0, 1, 6, 0, 7, 1, 7, 2, 3, 7, 9, 6, 0, 2, 8, 9, 3, 2, 9, 9, 3, 6, 6, 9, 0, 5, 1, 5, 6, 1, 3, 5, 4, 8, 6, 0, 9, 5, 6, 5, 9, 8, 3, 0, 5, 6, 9, 5, 4, 3, 8, 8, 0, 7, 3, 9, 3, 3, 5, 0, 3, 7, 9, 2, 0, 2, 6, 9, 2, 4, 0, 5, 4, 9, 2, 6, 1, 9, 5, 4, 2, 5, 8, 1, 9, 4, 4, 3, 1, 7
Offset: 1

Views

Author

Robert B Fowler, Feb 14 2022

Keywords

Comments

For regular unit-sided polygons with number of sides s >= 3, the s-gon fits inside the (s+1)-gon, and hence inside any t-gon where t > s. For s = 3 and s = 4, this is verified by diagram. For s >= 5, it is verified by observing that the s-gon's circumcircle is smaller than the (s+1)-gon's incircle. The difference of the two circles' radii is negative for s <= 4 and positive for s >= 5, and changes sign at non-integer value s = 4.49547...
Diagrams demonstrating this property of regular s-gons are interesting (see links).

Examples

			4.4954747887528...
		

Programs

  • Maple
    Digits:= 120:
    fsolve(cot(Pi/(s+1))-csc(Pi/s),s);  # Alois P. Heinz, Feb 16 2022
  • Mathematica
    RealDigits[s /. FindRoot[Cot[Pi/(s + 1)] == Csc[Pi/s], {s, 4}, WorkingPrecision -> 120]][[1]] (* Amiram Eldar, Feb 14 2022 *)
  • PARI
    solve(s=4, 5, cotan(Pi/(s+1)) - 1/sin(Pi/s)) \\ Michel Marcus, Feb 14 2022

Formula

For integer values of s >= 3:
c(s) = circumcircle radius of unit-sided regular s-gon = csc(Pi/s) / 2,
i(s) = incircle radius of unit-sided regular s-gon = cot(Pi/s) / 2,
d(s) = i(s+1) - c(s),
d(s) <= 0 for s <= 4, d(s) > 0 for s >= 5.
For real values of s:
d(1) = -infinity,
d'(s) > 0 for s > 1,
d(s) = 0 for s = 4.4954747887528...