A351601 a(n) = n^3 * Sum_{d^2|n} 1 / d^3.
1, 8, 27, 72, 125, 216, 343, 576, 756, 1000, 1331, 1944, 2197, 2744, 3375, 4672, 4913, 6048, 6859, 9000, 9261, 10648, 12167, 15552, 15750, 17576, 20412, 24696, 24389, 27000, 29791, 37376, 35937, 39304, 42875, 54432, 50653, 54872, 59319, 72000, 68921, 74088, 79507, 95832
Offset: 1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[p_, e_] := p^3*(p^(3*e) - p^(3*Floor[(e - 1)/2]))/(p^3 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 13 2022 *)
-
PARI
a(n) = n^3*sumdiv(n, d, if (issquare(d), 1/sqrtint(d^3))); \\ Michel Marcus, Feb 15 2022
Formula
Multiplicative with a(p^e) = p^3*(p^(3*e) - p^(3*floor((e-1)/2)))/(p^3 - 1). - Sebastian Karlsson, Feb 25 2022
Sum_{k=1..n} a(k) ~ c * n^4, where c = zeta(5)/4 = 0.259231... . - Amiram Eldar, Nov 13 2022