A351603 a(n) = n^5 * Sum_{d^2|n} 1 / d^5.
1, 32, 243, 1056, 3125, 7776, 16807, 33792, 59292, 100000, 161051, 256608, 371293, 537824, 759375, 1082368, 1419857, 1897344, 2476099, 3300000, 4084101, 5153632, 6436343, 8211456, 9768750, 11881376, 14407956, 17748192, 20511149, 24300000, 28629151, 34635776, 39135393
Offset: 1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[p_, e_] := p^5*(p^(5*e) - p^(5*Floor[(e - 1)/2]))/(p^5 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, Nov 13 2022 *)
-
PARI
a(n) = n^5*sumdiv(n, d, if (issquare(d), 1/sqrtint(d^5))); \\ Michel Marcus, Feb 15 2022
Formula
Multiplicative with a(p^e) = p^5*(p^(5*e) - p^(5*floor((e-1)/2)))/(p^5 - 1). - Sebastian Karlsson, Feb 25 2022
Sum_{k=1..n} a(k) ~ c * n^6, where c = zeta(7)/6 = 0.168058... . - Amiram Eldar, Nov 13 2022