A351604 a(n) = n^6 * Sum_{d^2|n} 1 / d^6.
1, 64, 729, 4160, 15625, 46656, 117649, 266240, 532170, 1000000, 1771561, 3032640, 4826809, 7529536, 11390625, 17043456, 24137569, 34058880, 47045881, 65000000, 85766121, 113379904, 148035889, 194088960, 244156250, 308915776, 387951930, 489419840, 594823321, 729000000
Offset: 1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[p_, e_] := p^6*(p^(6*e) - p^(6*Floor[(e - 1)/2]))/(p^6 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 30] (* Amiram Eldar, Nov 13 2022 *)
-
PARI
a(n) = n^6*sumdiv(n, d, if (issquare(d), 1/d^3)); \\ Michel Marcus, Feb 15 2022
Formula
Multiplicative with a(p^e) = p^6*(p^(6*e) - p^(6*floor((e-1)/2)))/(p^6 - 1). - Sebastian Karlsson, Feb 25 2022
Sum_{k=1..n} a(k) ~ c * n^7, where c = zeta(8)/7 = Pi^8/66150 = 0.143439... . - Amiram Eldar, Nov 13 2022