A351640 Triangle read by rows: T(n,k) is the number of patterns of length n with all distinct runs and maximum value k.
1, 0, 1, 0, 1, 2, 0, 1, 4, 6, 0, 1, 10, 18, 24, 0, 1, 16, 72, 96, 120, 0, 1, 34, 168, 528, 600, 720, 0, 1, 52, 486, 1632, 4200, 4320, 5040, 0, 1, 90, 1062, 6024, 16200, 36720, 35280, 40320, 0, 1, 152, 2460, 16896, 73200, 169920, 352800, 322560, 362880
Offset: 0
Examples
Triangle begins: 1, 0, 1; 0, 1, 2; 0, 1, 4, 6; 0, 1, 10, 18, 24; 0, 1, 16, 72, 96, 120; 0, 1, 34, 168, 528, 600, 720; ... The T(3,1) = 1 pattern is 111. The T(3,2) = 4 patterns are 112, 122, 211, 221. The T(3,3) = 6 patterns are 123, 132, 213, 231, 312, 321.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
Programs
-
PARI
\\ here LahI is A111596 as row polynomials. LahI(n, y)={sum(k=1, n, y^k*(-1)^(n-k)*(n!/k!)*binomial(n-1, k-1))} S(n)={my(p=prod(k=1, n, 1 + y*x^k + O(x*x^n))); 1 + sum(i=1, (sqrtint(8*n+1)-1)\2, polcoef(p, i, y)*LahI(i, y))} R(q)={[subst(serlaplace(p), y, 1) | p<-Vec(q)]} T(n)={my(q=S(n), v=concat([1], sum(k=1, n, R(q^k-1)*sum(r=k, n, y^r*binomial(r, k)*(-1)^(r-k)) ))); [Vecrev(p) | p<-v]} { my(A=T(10)); for(n=1, #A, print(A[n])) }
Formula
T(n,k) = k! * A351641(n,k).
Comments