A351200
Number of patterns of length n with all distinct runs.
Original entry on oeis.org
1, 1, 3, 11, 53, 305, 2051, 15731, 135697, 1300869, 13726431, 158137851, 1975599321, 26607158781, 384347911211, 5928465081703, 97262304328573, 1691274884085061, 31073791192091251, 601539400910369671, 12238270940611270161, 261071590963047040241
Offset: 0
The a(1) = 1 through a(3) = 11 patterns:
(1) (1,1) (1,1,1)
(1,2) (1,1,2)
(2,1) (1,2,2)
(1,2,3)
(1,3,2)
(2,1,1)
(2,1,3)
(2,2,1)
(2,3,1)
(3,1,2)
(3,2,1)
The complement for n = 3 counts the two patterns (1,2,1) and (2,1,2).
The version for run-lengths instead of runs is
A351292.
A005811 counts runs in binary expansion.
A032011 counts patterns with distinct multiplicities.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A131689 counts patterns by number of distinct parts.
A297770 counts distinct runs in binary expansion.
Counting words with all distinct runs:
-
A351202 = permutations of prime factors.
Cf.
A003242,
A098504,
A098859,
A106356,
A242882,
A325545,
A328592,
A329740,
A351014,
A351204,
A351291.
-
allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]] /@Subsets[Range[n-1]+1]];
Table[Length[Select[Join@@Permutations/@allnorm[n],UnsameQ@@Split[#]&]],{n,0,6}]
-
\\ here LahI is A111596 as row polynomials.
LahI(n,y)={sum(k=1, n, y^k*(-1)^(n-k)*(n!/k!)*binomial(n-1, k-1))}
S(n)={my(p=prod(k=1, n, 1 + y*x^k + O(x*x^n))); 1 + sum(i=1, (sqrtint(8*n+1)-1)\2, polcoef(p,i,y)*LahI(i,y))}
R(q)={[subst(serlaplace(p), y, 1) | p<-Vec(q)]}
seq(n)={my(q=S(n)); concat([1], sum(k=1, n, R(q^k-1)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)) ))} \\ Andrew Howroyd, Feb 12 2022
A351641
Triangle read by rows: T(n,k) is the number of length n word structures with all distinct runs using exactly k different symbols.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 5, 3, 1, 0, 1, 8, 12, 4, 1, 0, 1, 17, 28, 22, 5, 1, 0, 1, 26, 81, 68, 35, 6, 1, 0, 1, 45, 177, 251, 135, 51, 7, 1, 0, 1, 76, 410, 704, 610, 236, 70, 8, 1, 0, 1, 121, 906, 2068, 2086, 1266, 378, 92, 9, 1
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 1;
0, 1, 2, 1;
0, 1, 5, 3, 1;
0, 1, 8, 12, 4, 1;
0, 1, 17, 28, 22, 5, 1;
0, 1, 26, 81, 68, 35, 6, 1;
0, 1, 45, 177, 251, 135, 51, 7, 1;
...
The T(4,1) = 1 word is 1111.
The T(4,2) = 5 words are 1112, 1121, 1122, 1211, 1222.
The T(4,3) = 3 words are 1123, 1223, 1233.
The T(4,4) = 1 word is 1234.
-
\\ here LahI is A111596 as row polynomials.
LahI(n, y)={sum(k=1, n, y^k*(-1)^(n-k)*(n!/k!)*binomial(n-1, k-1))}
S(n)={my(p=prod(k=1, n, 1 + y*x^k + O(x*x^n))); 1 + sum(i=1, (sqrtint(8*n+1)-1)\2, polcoef(p, i, y)*LahI(i, y))}
R(q)={[subst(serlaplace(p), y, 1) | p<-Vec(q)]}
T(n)={my(q=S(n), v=concat([1], sum(k=1, n, R(q^k-1)*sum(r=k, n, y^r*binomial(r, k)*(-1)^(r-k)/r!) ))); [Vecrev(p) | p<-v]}
{ my(A=T(10)); for(n=1, #A, print(A[n])) }
A350824
Triangle read by rows: T(n,k) is the number of patterns of length n with all distinct run lengths and maximum value k, n >= 0, k = 0..floor(sqrt(8*n+1)-1/2).
Original entry on oeis.org
1, 0, 1, 0, 1, 0, 1, 4, 0, 1, 4, 0, 1, 8, 0, 1, 20, 36, 0, 1, 24, 36, 0, 1, 36, 72, 0, 1, 52, 108, 0, 1, 112, 576, 576, 0, 1, 128, 612, 576, 0, 1, 200, 1116, 1152, 0, 1, 264, 1584, 1728, 0, 1, 384, 2520, 2880, 0, 1, 700, 8064, 20736, 14400, 0, 1, 868, 9432, 22464, 14400
Offset: 0
Triangle begins:
1;
0, 1;
0, 1;
0, 1, 4;
0, 1, 4;
0, 1, 8;
0, 1, 20, 36;
0, 1, 24, 36;
0, 1, 36, 72;
0, 1, 52, 108;
0, 1, 112, 576, 576;
0, 1, 128, 612, 576;
0, 1, 200, 1116, 1152;
...
The T(5,1) = 1 pattern is 11111.
The T(5,2) = 8 patterns are 12222, 11222, 11122, 11112, 21111, 22111, 22211, 22221.
-
P(n) = {Vec(-1 + prod(k=1, n, 1 + y*x^k + O(x*x^n)))}
R(u, k) = {k*[subst(serlaplace(p)/y, y, k-1) | p<-u]}
T(n)={my(u=P(n), v=concat([1], sum(k=1, n, R(u, k)*sum(r=k, n, y^r*binomial(r, k)*(-1)^(r-k)) ))); [Vecrev(p) | p<-v]}
{ my(A=T(16)); for(n=1, #A, print(A[n])) }
Showing 1-3 of 3 results.
Comments