A351637
Triangle read by rows: T(n,k) is the number of length n word structures with all distinct run-lengths using exactly k different symbols, n >= 0, k = 0..floor(sqrt(8*n+1)-1/2).
Original entry on oeis.org
1, 0, 1, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 4, 0, 1, 10, 6, 0, 1, 12, 6, 0, 1, 18, 12, 0, 1, 26, 18, 0, 1, 56, 96, 24, 0, 1, 64, 102, 24, 0, 1, 100, 186, 48, 0, 1, 132, 264, 72, 0, 1, 192, 420, 120, 0, 1, 350, 1344, 864, 120, 0, 1, 434, 1572, 936, 120
Offset: 0
Triangle begins:
1;
0, 1;
0, 1;
0, 1, 2;
0, 1, 2;
0, 1, 4;
0, 1, 10, 6;
0, 1, 12, 6;
0, 1, 18, 12;
0, 1, 26, 18;
0, 1, 56, 96, 24;
0, 1, 64, 102, 24;
0, 1, 100, 186, 48;
0, 1, 132, 264, 72;
...
The T(6,1) = 1 word is 111111.
The T(6,2) = 10 words are 111112, 111122, 111211, 111221, 112111, 112221, 112222, 122111, 122211, 122222.
The T(6,3) = 6 words are 111223, 111233, 112333, 112223, 122333, 122233.
-
P(n) = {Vec(-1 + prod(k=1, n, 1 + y*x^k + O(x*x^n)))}
R(u, k) = {k*[subst(serlaplace(p)/y, y, k-1) | p<-u]}
T(n)={my(u=P(n), v=concat([1], sum(k=1, n, R(u, k)*sum(r=k, n, y^r*binomial(r, k)*(-1)^(r-k)/r!) ))); [Vecrev(p) | p<-v]}
{ my(A=T(16)); for(n=1, #A, print(A[n])) }
A351640
Triangle read by rows: T(n,k) is the number of patterns of length n with all distinct runs and maximum value k.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 1, 4, 6, 0, 1, 10, 18, 24, 0, 1, 16, 72, 96, 120, 0, 1, 34, 168, 528, 600, 720, 0, 1, 52, 486, 1632, 4200, 4320, 5040, 0, 1, 90, 1062, 6024, 16200, 36720, 35280, 40320, 0, 1, 152, 2460, 16896, 73200, 169920, 352800, 322560, 362880
Offset: 0
Triangle begins:
1,
0, 1;
0, 1, 2;
0, 1, 4, 6;
0, 1, 10, 18, 24;
0, 1, 16, 72, 96, 120;
0, 1, 34, 168, 528, 600, 720;
...
The T(3,1) = 1 pattern is 111.
The T(3,2) = 4 patterns are 112, 122, 211, 221.
The T(3,3) = 6 patterns are 123, 132, 213, 231, 312, 321.
-
\\ here LahI is A111596 as row polynomials.
LahI(n, y)={sum(k=1, n, y^k*(-1)^(n-k)*(n!/k!)*binomial(n-1, k-1))}
S(n)={my(p=prod(k=1, n, 1 + y*x^k + O(x*x^n))); 1 + sum(i=1, (sqrtint(8*n+1)-1)\2, polcoef(p, i, y)*LahI(i, y))}
R(q)={[subst(serlaplace(p), y, 1) | p<-Vec(q)]}
T(n)={my(q=S(n), v=concat([1], sum(k=1, n, R(q^k-1)*sum(r=k, n, y^r*binomial(r, k)*(-1)^(r-k)) ))); [Vecrev(p) | p<-v]}
{ my(A=T(10)); for(n=1, #A, print(A[n])) }
A351642
Number of length n word structures with all distinct runs using an infinite alphabet.
Original entry on oeis.org
1, 1, 2, 4, 10, 26, 74, 218, 668, 2116, 6928, 23254, 79998, 281694, 1011956, 3704900, 13815692, 52386978, 201787950, 789178950, 3130824160, 12589367840, 51287685476, 211557376938, 883067740514, 3728494418330, 15916998678040, 68672820917088, 299331260431104
Offset: 0
The a(4) = 10 words are 1111, 1112, 1121, 1122, 1211, 1222, 1123, 1223, 1233, 1234.
The initial terms are similar to
A206464.
-
\\ See A351641 for R, S.
seq(n)={my(q=S(n)); concat([1], sum(k=1, n, R(q^k-1)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)/r!) )); }
A351643
Number of length n word structures with all distinct runs using exactly 3 symbols.
Original entry on oeis.org
0, 0, 1, 3, 12, 28, 81, 177, 410, 906, 1869, 4001, 8094, 16032, 32355, 62499, 120078, 227880, 436743, 805797, 1487920, 2751618, 5017143, 9063625, 16153560, 29066676, 51334289, 90784671, 157941132, 275244344, 478874505, 823848357, 1412686722, 2400778830, 4091929101
Offset: 1
The a(3) = 1 word is 123.
The a(4) = 3 words are 1123, 1223, 1233.
The a(5) = 12 words are 11123, 11213, 11223, 11231, 11233, 12113, 12223, 12232, 12233, 12311, 12322, 12333.
-
\\ See A351641 for R, S.
seq(n)={my(q=S(n), c=3); sum(k=1, c, R(q^k-1)*binomial(c, k)*(-1)^(3-k))/c!}
A351644
Number of length n word structures with all distinct runs using at most 3 symbols.
Original entry on oeis.org
1, 1, 2, 4, 9, 21, 46, 108, 223, 487, 1028, 2060, 4327, 8591, 16818, 33562, 64441, 122983, 232378, 443446, 816371, 1503517, 2775372, 5052186, 9116047, 16231929, 29182198, 51503788, 91032821, 158301653, 275776810, 479642780, 824964483, 1414293391, 2403093256, 4095230980
Offset: 0
The a(1) = 1 word is 1.
The a(2) = 2 words are 11, 12.
The a(3) = 4 words are 111, 112, 122, 123.
The a(4) = 9 words are 1111, 1112, 1121, 1122, 1211, 1222, 1123, 1223, 1233.
-
\\ See A351641 for R, S.
seq(n)={my(q=S(n), c=3); concat([1], sum(k=1, c, R(q^k-1)*sum(r=k, c, binomial(r, k)*(-1)^(r-k)/r!) )); }
Showing 1-5 of 5 results.
Comments