A351638
Number of length n word structures with all distinct run-lengths using an infinite alphabet.
Original entry on oeis.org
1, 1, 1, 3, 3, 5, 17, 19, 31, 45, 177, 191, 335, 469, 733, 2679, 3063, 5129, 7445, 11431, 15667, 59025, 65301, 112379, 159827, 248185, 336913, 505683, 1660611, 1909901, 3184601, 4576771, 6994351, 9606093, 14229033, 19085255, 61388207, 69587029, 116257501, 164298495, 252820047
Offset: 0
The a(3) = 3 words are 111, 112, 122.
The a(4) = 3 words are 1111, 1112, 1222. The word 1122 is not included because both runs have the same length.
The a(6) = 17 words are 111111, 111112, 111122, 111211, 111221, 112111, 112221, 112222, 122111, 122211, 122222, 111223, 111233, 112333, 112223, 122333, 122233.
-
P(n) = {Vec(-1 + prod(k=1, n, 1 + y*x^k + O(x*x^n)))}
R(u, k) = {k*[subst(serlaplace(p)/y, y, k-1) | p<-u]}
seq(n)={my(u=P(n)); concat([1], sum(k=1, n, R(u, k)*sum(r=k, n, binomial(r, k)*(-1)^(r-k)/r!) ))}
A351641
Triangle read by rows: T(n,k) is the number of length n word structures with all distinct runs using exactly k different symbols.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 5, 3, 1, 0, 1, 8, 12, 4, 1, 0, 1, 17, 28, 22, 5, 1, 0, 1, 26, 81, 68, 35, 6, 1, 0, 1, 45, 177, 251, 135, 51, 7, 1, 0, 1, 76, 410, 704, 610, 236, 70, 8, 1, 0, 1, 121, 906, 2068, 2086, 1266, 378, 92, 9, 1
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 1;
0, 1, 2, 1;
0, 1, 5, 3, 1;
0, 1, 8, 12, 4, 1;
0, 1, 17, 28, 22, 5, 1;
0, 1, 26, 81, 68, 35, 6, 1;
0, 1, 45, 177, 251, 135, 51, 7, 1;
...
The T(4,1) = 1 word is 1111.
The T(4,2) = 5 words are 1112, 1121, 1122, 1211, 1222.
The T(4,3) = 3 words are 1123, 1223, 1233.
The T(4,4) = 1 word is 1234.
-
\\ here LahI is A111596 as row polynomials.
LahI(n, y)={sum(k=1, n, y^k*(-1)^(n-k)*(n!/k!)*binomial(n-1, k-1))}
S(n)={my(p=prod(k=1, n, 1 + y*x^k + O(x*x^n))); 1 + sum(i=1, (sqrtint(8*n+1)-1)\2, polcoef(p, i, y)*LahI(i, y))}
R(q)={[subst(serlaplace(p), y, 1) | p<-Vec(q)]}
T(n)={my(q=S(n), v=concat([1], sum(k=1, n, R(q^k-1)*sum(r=k, n, y^r*binomial(r, k)*(-1)^(r-k)/r!) ))); [Vecrev(p) | p<-v]}
{ my(A=T(10)); for(n=1, #A, print(A[n])) }
A350824
Triangle read by rows: T(n,k) is the number of patterns of length n with all distinct run lengths and maximum value k, n >= 0, k = 0..floor(sqrt(8*n+1)-1/2).
Original entry on oeis.org
1, 0, 1, 0, 1, 0, 1, 4, 0, 1, 4, 0, 1, 8, 0, 1, 20, 36, 0, 1, 24, 36, 0, 1, 36, 72, 0, 1, 52, 108, 0, 1, 112, 576, 576, 0, 1, 128, 612, 576, 0, 1, 200, 1116, 1152, 0, 1, 264, 1584, 1728, 0, 1, 384, 2520, 2880, 0, 1, 700, 8064, 20736, 14400, 0, 1, 868, 9432, 22464, 14400
Offset: 0
Triangle begins:
1;
0, 1;
0, 1;
0, 1, 4;
0, 1, 4;
0, 1, 8;
0, 1, 20, 36;
0, 1, 24, 36;
0, 1, 36, 72;
0, 1, 52, 108;
0, 1, 112, 576, 576;
0, 1, 128, 612, 576;
0, 1, 200, 1116, 1152;
...
The T(5,1) = 1 pattern is 11111.
The T(5,2) = 8 patterns are 12222, 11222, 11122, 11112, 21111, 22111, 22211, 22221.
-
P(n) = {Vec(-1 + prod(k=1, n, 1 + y*x^k + O(x*x^n)))}
R(u, k) = {k*[subst(serlaplace(p)/y, y, k-1) | p<-u]}
T(n)={my(u=P(n), v=concat([1], sum(k=1, n, R(u, k)*sum(r=k, n, y^r*binomial(r, k)*(-1)^(r-k)) ))); [Vecrev(p) | p<-v]}
{ my(A=T(16)); for(n=1, #A, print(A[n])) }
A351639
Number of length n word structures with all distinct run-lengths using at most 3 symbols.
Original entry on oeis.org
1, 1, 1, 3, 3, 5, 17, 19, 31, 45, 153, 167, 287, 397, 613, 1695, 2007, 3185, 4565, 6799, 9235, 24057, 27645, 44483, 61619, 92089, 122857, 179355, 385995, 468605, 713849, 996331, 1441447, 1947813, 2766657, 3659135, 7467623, 8930629, 13471885, 18283575, 26484639
Offset: 0
-
\\ See A351637 for P, R.
seq(n)={my(u=P(n)); concat([1], sum(k=1, n, R(u, k)*sum(r=k, 3, binomial(r, k)*(-1)^(r-k)/r!) ))}
A351645
Triangle read by rows: T(n,k) is the number of length n word structures using exactly k different symbols with all distinct run-lengths and the first run length of a symbol less than that of previous symbols, n >= 0, k = 0..floor(sqrt(8*n+1)-1/2).
Original entry on oeis.org
1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 5, 1, 0, 1, 6, 1, 0, 1, 9, 2, 0, 1, 13, 3, 0, 1, 28, 16, 1, 0, 1, 32, 17, 1, 0, 1, 50, 31, 2, 0, 1, 66, 44, 3, 0, 1, 96, 70, 5, 0, 1, 175, 224, 36, 1, 0, 1, 217, 262, 39, 1, 0, 1, 308, 428, 71, 2, 0, 1, 425, 619, 105, 3
Offset: 0
Triangle begins:
1;
0, 1;
0, 1;
0, 1, 1;
0, 1, 1;
0, 1, 2;
0, 1, 5, 1;
0, 1, 6, 1;
0, 1, 9, 2;
0, 1, 13, 3;
0, 1, 28, 16, 1;
0, 1, 32, 17, 1;
0, 1, 50, 31, 2;
0, 1, 66, 44, 3;
0, 1, 96, 70, 5;
...
The T(8,1) = 1 word is 11111111.
The T(8,2) = 9 words are 11111112, 11111122, 11111211, 11111221, 11111222, 11112111, 11112221, 11121111, 11211111.
The T(8,3) = 2 words are 11111223, 11112223.
In the last example, the word 11111223 corresponds with 6 words in A351637 which are 11111223, 11111233, 11222223, 11233333, 12222233, 12233333.
-
P(n) = {Vec(-1 + prod(k=1, n, 1 + y*x^k + O(x*x^n)))}
R(u, k) = {k*[subst(serlaplace(p)/y, y, k-1) | p<-u]}
T(n)={my(u=P(n), v=concat([1], sum(k=1, n, R(u, k)*sum(r=k, n, y^r*binomial(r, k)*(-1)^(r-k)/(r!)^2) ))); [Vecrev(p) | p<-v]}
{ my(A=T(16)); for(n=1, #A, print(A[n])) }
Showing 1-5 of 5 results.
Comments