cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351726 Table T(n,k) read by rows: number of compositions of n into k parts of size 1, 5, 10 or 25.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 0, 4, 0, 0, 0, 1, 0, 0, 0, 0, 0, 5, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 6, 0, 0, 0, 1, 0, 0, 2, 3, 0, 0, 0, 7, 0, 0, 0, 1, 0, 0, 0, 3, 6, 0, 0, 0, 8, 0, 0, 0, 1, 0, 0, 0, 0, 4
Offset: 0

Views

Author

R. J. Mathar, Feb 17 2022

Keywords

Examples

			T(7,3)=3 counts 1+1+5 =1+5+1 =5+1+1.
T(10,2)=1 counts 5+5.
T(12,3)=3 counts 1+1+10 =1+10+1 =10+1+1.
T(15,3)=1 counts 5+5+5.
T(16,3)=6 counts 1+5+10 =1+10+5 =5+1+10 =5+10+1 =10+1+5 =10+5+1.
The triangle starts in row n=0 and columns 0<=k<=n:
1
0 1
0 0 1
0 0 0 1
0 0 0 0  1
0 1 0 0  0  1
0 0 2 0  0  0  1
0 0 0 3  0  0  0  1
0 0 0 0  4  0  0  0  1
0 0 0 0  0  5  0  0  0  1
0 1 1 0  0  0  6  0  0  0   1
0 0 2 3  0  0  0  7  0  0   0  1
0 0 0 3  6  0  0  0  8  0   0  0  1
0 0 0 0  4 10  0  0  0  9   0  0  0  1
0 0 0 0  0  5 15  0  0  0  10  0  0  0  1
0 0 2 1  0  0  6 21  0  0   0 11  0  0  0  1
0 0 0 6  4  0  0  7 28  0   0  0 12  0  0  0  1
0 0 0 0 12 10  0  0  8 36   0  0  0 13  0  0  0  1
0 0 0 0  0 20 20  0  0  9  45  0  0  0 14  0  0  0 1
0 0 0 0  0  0 30 35  0  0  10 55  0  0  0 15  0  0 0 1
0 0 1 3  1  0  0 42 56  0   0 11 66  0  0  0 16  0 0 0 1
0 0 0 3 12  5  0  0 56 84   0  0 12 78  0  0  0 17 0 0 0 1
0 0 0 0  6 30 15  0  0 72 120  0  0 13 91  0  0  0 18 0 0 0 1
		

Crossrefs

Cf. A351724 (row sums), A351725 (partitions).

Formula

T(n,0) = 0 if k>0.
G.f.: 1/(1-y*g(x)) where g(x)=x+x^5+x^10+x^25 is the g.f. of column k=1.