cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A351724 Number of compositions of n into parts of size 1, 5, 10 or 25.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 9, 13, 18, 24, 31, 42, 58, 80, 109, 146, 197, 268, 366, 499, 676, 916, 1243, 1690, 2299, 3122, 4237, 5751, 7811, 10614, 14418, 19580, 26587, 36106, 49043, 66614, 90473, 122869, 166866, 226632, 307810, 418060, 567784, 771122, 1047296, 1422396, 1931845
Offset: 0

Views

Author

R. J. Mathar, Feb 17 2022

Keywords

Comments

Starts to differ from A114044 at n=50.

Examples

			a(8)=5 counts 5 compositions 1+1+1+1+1+1+1+1 = 1+1+1+5 = 1+1+5+1 = 1+5+1+1 = 5+1+1+1.
		

Crossrefs

Cf. A114044 (parts 50 and 100 admitted), A001299 (partitions).
Row sums of A351726.

Formula

G.f. : 1/(1-x-x^5-x^10-x^25).
a(n) = +a(n-1) +a(n-5) +a(n-10) +a(n-25).

A358131 Triangle T(n,k) read by rows, where each row lists the value of n coins, in cents, using k dimes (10 cents) and n-k quarters (25 cents).

Original entry on oeis.org

0, 25, 10, 50, 35, 20, 75, 60, 45, 30, 100, 85, 70, 55, 40, 125, 110, 95, 80, 65, 50, 150, 135, 120, 105, 90, 75, 60, 175, 160, 145, 130, 115, 100, 85, 70, 200, 185, 170, 155, 140, 125, 110, 95, 80, 225, 210, 195, 180, 165, 150, 135, 120, 105, 90, 250, 235, 220, 205, 190
Offset: 0

Views

Author

Wesley Ivan Hurt, Oct 30 2022

Keywords

Examples

			Triangle begins
  n\k |   0    1    2    3    4    5    6    7    8    9   10
  ----|----------------------------------------------------------
   0  |   0
   1  |  25   10
   2  |  50   35   20
   3  |  75   60   45   30
   4  | 100   85   70   55   40
   5  | 125  110   95   80   65   50
   6  | 150  135  120  105   90   75   60
   7  | 175  160  145  130  115  100   85   70
   8  | 200  185  170  155  140  125  110   95   80
   9  | 225  210  195  180  165  150  135  120  105   90
  10  | 250  235  220  205  190  175  160  145  130  115  100
  ...
		

Crossrefs

Cf. A008592 (right diagonal), A008607 (1st column).
Cf. A351726.

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = 10 k + 25 (n - k); Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten

Formula

T(n,k) = 10*k + 25*(n-k), 0 <= k <= n.
Showing 1-2 of 2 results.