cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351801 a(n) = A351477(n) * FA where F is the Fermat point of a primitive integer-sided triangle ABC with A < B < C < 2*Pi/3 and FA + FB + FC = A336329(n).

Original entry on oeis.org

325, 440, 5016, 39360, 14800, 70720, 91200, 3864, 9405, 30429, 11704, 4669, 250096, 11704, 32640, 81840, 203000, 7208, 218120, 199325, 99360, 76760, 359352, 342912, 8184, 122200, 595595, 621387, 12600, 26040, 19320, 137344, 3108105, 24955, 409640, 58400, 1520
Offset: 1

Views

Author

Bernard Schott, Feb 19 2022

Keywords

Comments

Inspired by Project Euler, Problem 143 (see link) where such a triangle is called a "Torricelli triangle".
For the corresponding primitive triples, miscellaneous properties and references, see A336328.
Equivalently, a(n) is the numerator of the fraction FA = a(n) / A351477(n).
Also, if F is the Fermat point of a triangle ABC with A < B < C < 2*Pi/3, where AB, BC, CA, FA, FB and FC are all positive integers, then, when FA + FB + FC = d = A351476(n), we have FA = a(n).
FA is the largest length with FC < FB < FA (remember a < b < c).

Examples

			For the 1st triple in A336328, i.e., (57, 65, 73), we get A336329(1) = FA + FB + FC = 325/7 + 264/7 + 195/7 = 112, hence A351477(1) = 7 and a(1) = 325.
		

Crossrefs

Cf. A336328 (primitive triples), A336329 (FA + FB + FC), A336330 (smallest side), A336331 (middle side), A336332 (largest side), A336333 (perimeter), this sequence (FA numerator), A351802 (FB numerator), A351803 (FC numerator), A351477 (common denominator of FA, FB, FC), A351476 (other 'FA + FB + FC').

Programs

  • PARI
    lista(nn) = {my(d); for(c=4, nn, for(b=ceil(c/sqrt(3)), c-1, for(a=1+(sqrt(4*c^2-3*b^2)-b)\2, b-1, if(gcd([a, b, c])==1 && issquare(d=6*(a^2*b^2+b^2*c^2+c^2*a^2)-3*(a^4+b^4+c^4)) && issquare(d=(a^2+b^2+c^2+sqrtint(d))/2), d = sqrtint(d); print1(numerator(sqrtint(((2*b*c)^2 - (b^2 + c^2 - d^2)^2)/3)/d), ", ");););););} \\ Michel Marcus, Mar 02 2022

Formula

a(n) = A351476(n) - A351802(n) - A351803(n).
FA = sqrt(((2*b*c)^2 - (b^2 + c^2 - d^2)^2)/3) / d. - Jinyuan Wang, Feb 19 2022

Extensions

More terms from Jinyuan Wang, Feb 19 2022