A351818 G.f. A(x) satisfies: A(x) = 1 + x * A(x/(1 - x)^5) / (1 - x)^5.
1, 1, 6, 31, 211, 1841, 18547, 210664, 2682657, 37807531, 581985596, 9696297528, 173702897000, 3327063115248, 67790086866271, 1462900566163696, 33310115601839624, 797687851718024035, 20032231443590167914, 526189230537615409571, 14423255501358439152231
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..452
Programs
-
Mathematica
nmax = 20; A[] = 0; Do[A[x] = 1 + x A[x/(1 - x)^5]/(1 - x)^5 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] a[0] = 1; a[n_] := a[n] = Sum[Binomial[n + 4 k + 3, n - k - 1] a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 20}]
Formula
a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(n+4*k+3,n-k-1) * a(k).