cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A125274 Eigensequence of triangle A078812: a(n) = Sum_{k=0..n-1} A078812(n-1,k)*a(k) for n > 0 with a(0)=1.

Original entry on oeis.org

1, 1, 3, 10, 42, 210, 1199, 7670, 54224, 418744, 3499781, 31425207, 301324035, 3069644790, 33078375153, 375634524357, 4480492554993, 55971845014528, 730438139266281, 9935106417137098, 140553930403702487
Offset: 0

Views

Author

Paul D. Hanna, Nov 26 2006

Keywords

Examples

			a(3) = 3*(1) + 4*(1) + 1*(3) = 10;
a(4) = 4*(1) + 10*(1) + 6*(3) + 1*(10) = 42;
a(5) = 5*(1) + 20*(1) + 21*(3) + 8*(10) + 1*(42) = 210.
Triangle A078812(n,k) = binomial(n+k+1, n-k) begins:
  1;
  2,  1;
  3,  4,  1;
  4, 10,  6,  1;
  5, 20, 21,  8,  1;
  6, 35, 56, 36, 10,  1; ...
where g.f. of column k = 1/(1-x)^(2*k+2).
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n+k, n-k-1] * a[k], {k, 0, n-1}]; Array[a, 20, 0] (* Amiram Eldar, Nov 24 2018 *)
  • PARI
    a(n)=if(n==0,1,sum(k=0,n-1, a(k)*binomial(n+k, n-k-1)))

Formula

a(n) = Sum_{k=0..n-1} binomial(n+k, n-k-1)*a(k) for n > 0 with a(0)=1.
G.f. satisfies A(x) = 1 + x/(1-x)^2*A(x/(1-x)^2). [Vladimir Kruchinin, Nov 28 2011]

A351816 G.f. A(x) satisfies: A(x) = 1 + x * A(x/(1 - x)^3) / (1 - x)^3.

Original entry on oeis.org

1, 1, 4, 16, 83, 526, 3826, 31338, 285556, 2857831, 31083421, 364523891, 4579906098, 61313286380, 870531542926, 13055593578453, 206097824225131, 3414146518958089, 59189048364709453, 1071264611091540458, 20197719805598878119, 395917304689782855768
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 20 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 21; A[] = 0; Do[A[x] = 1 + x A[x/(1 - x)^3]/(1 - x)^3 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n + 2 k + 1, n - k - 1] a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 21}]

Formula

a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(n+2*k+1,n-k-1) * a(k).

A351817 G.f. A(x) satisfies: A(x) = 1 + x * A(x/(1 - x)^4) / (1 - x)^4.

Original entry on oeis.org

1, 1, 5, 23, 139, 1052, 9166, 90073, 989205, 11981051, 158149438, 2255926638, 34549223880, 564898101239, 9812669832553, 180324597042263, 3492960489714519, 71092066388237562, 1516044005669227542, 33788707128788508476, 785270646437483414261, 18992014442689191510460
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 20 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 21; A[] = 0; Do[A[x] = 1 + x A[x/(1 - x)^4]/(1 - x)^4 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n + 3 k + 2, n - k - 1] a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 21}]

Formula

a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(n+3*k+2,n-k-1) * a(k).
Showing 1-3 of 3 results.