cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A125274 Eigensequence of triangle A078812: a(n) = Sum_{k=0..n-1} A078812(n-1,k)*a(k) for n > 0 with a(0)=1.

Original entry on oeis.org

1, 1, 3, 10, 42, 210, 1199, 7670, 54224, 418744, 3499781, 31425207, 301324035, 3069644790, 33078375153, 375634524357, 4480492554993, 55971845014528, 730438139266281, 9935106417137098, 140553930403702487
Offset: 0

Views

Author

Paul D. Hanna, Nov 26 2006

Keywords

Examples

			a(3) = 3*(1) + 4*(1) + 1*(3) = 10;
a(4) = 4*(1) + 10*(1) + 6*(3) + 1*(10) = 42;
a(5) = 5*(1) + 20*(1) + 21*(3) + 8*(10) + 1*(42) = 210.
Triangle A078812(n,k) = binomial(n+k+1, n-k) begins:
  1;
  2,  1;
  3,  4,  1;
  4, 10,  6,  1;
  5, 20, 21,  8,  1;
  6, 35, 56, 36, 10,  1; ...
where g.f. of column k = 1/(1-x)^(2*k+2).
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n+k, n-k-1] * a[k], {k, 0, n-1}]; Array[a, 20, 0] (* Amiram Eldar, Nov 24 2018 *)
  • PARI
    a(n)=if(n==0,1,sum(k=0,n-1, a(k)*binomial(n+k, n-k-1)))

Formula

a(n) = Sum_{k=0..n-1} binomial(n+k, n-k-1)*a(k) for n > 0 with a(0)=1.
G.f. satisfies A(x) = 1 + x/(1-x)^2*A(x/(1-x)^2). [Vladimir Kruchinin, Nov 28 2011]

A351816 G.f. A(x) satisfies: A(x) = 1 + x * A(x/(1 - x)^3) / (1 - x)^3.

Original entry on oeis.org

1, 1, 4, 16, 83, 526, 3826, 31338, 285556, 2857831, 31083421, 364523891, 4579906098, 61313286380, 870531542926, 13055593578453, 206097824225131, 3414146518958089, 59189048364709453, 1071264611091540458, 20197719805598878119, 395917304689782855768
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 20 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 21; A[] = 0; Do[A[x] = 1 + x A[x/(1 - x)^3]/(1 - x)^3 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n + 2 k + 1, n - k - 1] a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 21}]

Formula

a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(n+2*k+1,n-k-1) * a(k).

A351818 G.f. A(x) satisfies: A(x) = 1 + x * A(x/(1 - x)^5) / (1 - x)^5.

Original entry on oeis.org

1, 1, 6, 31, 211, 1841, 18547, 210664, 2682657, 37807531, 581985596, 9696297528, 173702897000, 3327063115248, 67790086866271, 1462900566163696, 33310115601839624, 797687851718024035, 20032231443590167914, 526189230537615409571, 14423255501358439152231
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 20 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; A[] = 0; Do[A[x] = 1 + x A[x/(1 - x)^5]/(1 - x)^5 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n + 4 k + 3, n - k - 1] a[k], {k, 0, n - 1}]; Table[a[n], {n, 0, 20}]

Formula

a(0) = 1; a(n) = Sum_{k=0..n-1} binomial(n+4*k+3,n-k-1) * a(k).

A354696 G.f. A(x) satisfies: A(x) = 1 + x * A(x^4/(1 - x)^4) / (1 - x)^4.

Original entry on oeis.org

1, 1, 4, 10, 20, 36, 64, 120, 240, 499, 1060, 2314, 5252, 12360, 29632, 70992, 168096, 392465, 905940, 2075314, 4730052, 10735516, 24258688, 54553000, 122076240, 271914499, 603183508, 1333268098, 2937818900, 6455143760, 14146816640, 30929336736, 67473335104
Offset: 0

Views

Author

Seiichi Manyama, Jun 03 2022

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, (i-1)\4, binomial(i+2, 4*j+3)*v[j+1])); v;

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/4)} binomial(n+2,4*k+3) * a(k).
Showing 1-4 of 4 results.