cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351839 Triangle read by rows: T(n, k) = A027375(n)*Sum_{m=1..floor(n/k)} binomial(n, k*m).

Original entry on oeis.org

2, 6, 2, 14, 6, 6, 30, 14, 24, 12, 62, 30, 60, 60, 30, 126, 62, 126, 180, 180, 54, 254, 126, 252, 420, 630, 378, 126, 510, 254, 504, 852, 1680, 1512, 1008, 240, 1022, 510, 1014, 1620, 3780, 4536, 4536, 2160, 504, 2046, 1022, 2040, 3060, 7590, 11340, 15120, 10800, 5040, 990
Offset: 1

Views

Author

Stefano Spezia, Feb 21 2022

Keywords

Comments

T(n, k) is the number of k-th roots of unity as eigenvalues of the quantum operator O for a free Motzkin spin chain of length n. For k = 1, it gives the correct result if one excludes the eigenvalue 2.
For the definitions of both a free Motzkin spin chain and the quantum operator O, see Hao et al.

Examples

			Triangle begins:
    2;
    6,   2;
   14,   6,   6;
   30,  14,  24,  12;
   62,  30,  60,  60,  30;
  126,  62, 126, 180, 180,  54;
  254, 126, 252, 420, 630, 378, 126;
  ...
		

Crossrefs

Cf. A000918 (k = 2), A007318, A024023 (row sums), A027375 (leading diagonal), A095121 (k = 1).

Programs

  • Mathematica
    g[n_]:= DivisorSum[n,(2^#)*MoebiusMu[n/#]&]; binomSum[n_,k_]:=Sum[Binomial[n, i],{i,k,n,k}]; T[n_,k_]:=g[k]*binomSum[n,k]; (* See p. 9 in Hao et al. *)
    Flatten[Table[T[n,k],{n,10},{k,n}]]
  • PARI
    T(n,k) = sumdiv(k,d,moebius(d)*2^(k/d))*sum(m=1,n\k,binomial(n,k*m)) \\ Andrew Howroyd, Feb 21 2022