A351857 Number of nonnegative integer solutions to n = x_1 + x_2 + ... + x_(2*n) + 2*y_1 + 2*y_2 + ... + 2*y_(2*n).
2, 14, 92, 654, 4752, 35204, 264112, 2000526, 15264866, 117161264, 903533380, 6995547780, 54343476072, 423360920528, 3306313730592, 25876855432846, 202909132368942, 1593755466338030, 12537009118650016, 98753463725849904, 778825917274945408, 6149069826564738780
Offset: 1
Examples
n = 2: 14 distributions of 2 identical objects in 4 white and 4 black baskets White Black 1) (0) (0) (0) (0) [2] [0] [0] [0] 2) (0) (0) (0) (0) [0] [2] [0] [0] 3) (0) (0) (0) (0) [0] [0] [2] [0] 4) (0) (0) (0) (0) [0] [0] [0] [2] 5) (2) (0) (0) (0) [0] [0] [0] [0] 6) (0) (2) (0) (0) [0] [0] [0] [0] 7) (0) (0) (2) (0) [0] [0] [0] [0] 8) (0) (0) (0) (2) [0] [0] [0] [0] 9) (1) (1) (0) (0) [0] [0] [0] [0] 10) (1) (0) (1) (0) [0] [0] [0] [0] 11) (1) (0) (0) (1) [0] [0] [0] [0] 12) (0) (1) (1) (0) [0] [0] [0] [0] 13) (0) (1) (0) (1) [0] [0] [0] [0] 14) (0) (0) (1) (1) [0] [0] [0] [0]
References
- R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.
Programs
-
Maple
seq(add( binomial(3*n-2*k-1,n-2*k)*binomial(2*n+k-1,k), k = 0..floor(n/2) ), n = 0..20);
-
PARI
a(n) = sum(k = 0, n\2, binomial(3*n-2*k-1, n-2*k)*binomial(2*n+k-1, k)); \\ Michel Marcus, Feb 27 2022
Formula
a(n) = [x^n] ( 1/((1 - x)*(1 - x^2)) )^(2*n).
a(n) = Sum_{k = 0..floor(n/2)} C(3*n-2*k-1,n-2*k)*C(2*n+k-1,k).
a(n) = Sum_{k = 0..n} (-1)^k*C(5*n-k-1,n-k)*C(2*n+k-1,k).
1024*n*(n-1)*(2*n-1)*(2*n-3)*(4*n-1)*(4*n-3)*P(n-1)*a(n) = 8*(n-1)*(2*n-3)*Q(n)*a(n-1) + 7*(7*n-8)*(7*n-9)*(7*n-10)*(7*n-11)*(7*n-12)*(7*n-13)*P(n)*a(n-2), with a(1) = 2, a(2) = 14, P(n) = 1744*n^4-3815*n^3+ 2920*n^2-912*n+96 and Q(n) = 46599680*n^8-381534880*n^7+1306363456*n^6- 2428492279*n^5+2661904813*n^4 -1747232452*n^3+664205312*n^2- 132046848*n+10321920.
The Gauss congruences a(n*p^k) == a(n*p^(k-1)) (mod p^k) hold for all primes p and positive integers n and k.
Conjecture: the supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for all primes p >= 5 and positive integers n and k.
The o.g.f. A(x) = 2*x + 14*x^2 + 92*x^3 + ... is the diagonal of the bivariate rational function x*t/(1 - t/((1 - x)*(1 - x^2))^2 ) and hence is an algebraic function over Q(x) by Stanley 1999, Theorem 6.33, p. 197.
Let F(x) = (1/x)*Series_Reversion( x*(1 - x)^2*(1 - x^2)^2 ) = A365855(x). Then A(x) = x*(d/dx log(F(x))). [corrected by Jason Yuen, Mar 22 2025]
Comments