A351806 Denominator of zeta({6}_n)/Pi^(6*n).
1, 945, 212837625, 64965492466875, 432684797065192546875, 1347828286825972065254765625, 197885500589205605585596463448046875, 18132629348577543860598956218936672646484375, 3673787208165374996876652878250276546299488037109375
Offset: 0
Links
- J. M. Borwein, D. M. Bradley, and D. J. Broadhurst, Evaluations of k-fold Euler/Zagier sums: a compendium of results for arbitrary k, arXiv:hep-th/9611004, 1996.
- Roudy El Haddad, Multiple Sums and Partition Identities, arXiv:2102.00821 [math.CO], 2021.
- Roudy El Haddad, A generalization of multiple zeta value. Part 2: Multiple sums. Notes on Number Theory and Discrete Mathematics, 28(2), 2022, 200-233, DOI: 10.7546/nntdm.2022.28.2.200-233.
Crossrefs
Programs
-
Mathematica
a[n_] := Denominator[6*2^(6*n)/(6*n + 3)!]; Array[a, 9, 0] (* Amiram Eldar, Feb 19 2022 *)
-
PARI
a(n) = denominator(6*2^(6*n)/(6*n + 3)!); \\ Michel Marcus, Feb 22 2022
Formula
a(n) = denominator(6*2^(6*n)/(6*n + 3)!).
Comments