cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A351881 Expansion of e.g.f. 1 / (1 - x)^cosh(x).

Original entry on oeis.org

1, 1, 2, 9, 42, 235, 1605, 12446, 108836, 1061565, 11402565, 133806134, 1703059974, 23366177055, 343788954691, 5399655967642, 90173526680152, 1595513146457993, 29817130502252169, 586883850601630054, 12135450890055396810, 263012688923611212107, 5962155058714267567319
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 23 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[1/(1 - x)^Cosh[x], {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(1/(1-x)^cosh(x))) \\ Michel Marcus, Feb 23 2022

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * |A009416(k)| * a(n-k).
a(n) ~ n! * n^(cosh(1)-1) / Gamma(cosh(1)). - Vaclav Kotesovec, Feb 23 2022

A351882 Expansion of e.g.f. 1 / (1 - x)^sec(x).

Original entry on oeis.org

1, 1, 2, 9, 42, 255, 1785, 14406, 131236, 1328037, 14809965, 180014054, 2371072374, 33607312219, 510183508471, 8255546409722, 141855645636152, 2579236008913689, 49471832899923129, 998261936044450726, 21138674688880283370, 468687157358947546415, 10858634384569444410179
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 23 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 22; CoefficientList[Series[1/(1 - x)^Sec[x], {x, 0, nmax}], x] Range[0, nmax]!
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace(1/(1-x)^(1/cos(x)))) \\ Michel Marcus, Feb 23 2022

Formula

a(0) = 1; a(n) = Sum_{k=1..n} binomial(n-1,k-1) * |A009429(k)| * a(n-k).
a(n) ~ n! / (Gamma(1/cos(1)) * n^(1 - 1/cos(1))) * (1 + (1 - 1/cos(1)) * sin(1) * log(n) / (n*cos(1)^2)). - Vaclav Kotesovec, Feb 24 2022
Showing 1-2 of 2 results.