cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351885 Decimal expansion of lim_{n -> infinity} (Sum_{x=1..n} x^(1/x) - Integral_{k=0..n} x^(1/x) dx).

Original entry on oeis.org

5, 6, 8, 1, 8, 0, 0, 1, 2, 3, 5, 9, 0, 6, 6, 4, 5, 2, 5, 1, 2, 3, 1, 4, 7, 2, 6, 5, 2, 1, 8, 8, 3, 0, 7, 4, 4, 4, 0, 4, 4, 9, 1, 3, 0, 5, 1, 4, 4, 0, 1, 4, 8, 6, 5, 9, 0, 0, 7, 6, 6, 3, 3, 2, 5, 1, 5, 8, 3, 4, 2, 7, 6, 8, 0, 7, 3, 5, 1, 0, 0, 4, 2, 2, 1, 7, 5
Offset: 0

Views

Author

Daniel Hoyt, Feb 23 2022

Keywords

Comments

The limiting difference between the integral and sum of x^(1/x). The limit converges slowly.

Examples

			0.5681800123590664525123147265218830744...
		

Crossrefs

Programs

  • Python
    # Gives 15 correct digits
    from mpmath import stieltjes,fac,quad
    def limgen(n):
        terms = []
        for y in range(3, n):
            for x in range(y, n):
                terms.append((((-1)**y)*stieltjes(x)*(x-(y-1))**(y-2))/(fac(x-(y-2))*fac(y-2)))
        return terms
    f = lambda x: x**(1/x)
    int01 = quad(f, [0,1])
    limit = sum(limgen(60)) + 1.5 - stieltjes(0) - int01
    print(limit)

Formula

Equals 3/2 - A001620 - A175999 + Sum_{k>=3} Sum_{n>=k} (((-1)^k)*Stieltjes(n)*(n-k+1)^(k-2))/((n-k+2)!*(k-2)!).