A351885 Decimal expansion of lim_{n -> infinity} (Sum_{x=1..n} x^(1/x) - Integral_{k=0..n} x^(1/x) dx).
5, 6, 8, 1, 8, 0, 0, 1, 2, 3, 5, 9, 0, 6, 6, 4, 5, 2, 5, 1, 2, 3, 1, 4, 7, 2, 6, 5, 2, 1, 8, 8, 3, 0, 7, 4, 4, 4, 0, 4, 4, 9, 1, 3, 0, 5, 1, 4, 4, 0, 1, 4, 8, 6, 5, 9, 0, 0, 7, 6, 6, 3, 3, 2, 5, 1, 5, 8, 3, 4, 2, 7, 6, 8, 0, 7, 3, 5, 1, 0, 0, 4, 2, 2, 1, 7, 5
Offset: 0
Examples
0.5681800123590664525123147265218830744...
Links
- Daniel Hoyt, Graphical representation of the limit.
- Daniel Hoyt, Computing the limiting difference between the sum and integral of x^(1/x).
- Wikipedia, Stieltjes Constants
Programs
-
Python
# Gives 15 correct digits from mpmath import stieltjes,fac,quad def limgen(n): terms = [] for y in range(3, n): for x in range(y, n): terms.append((((-1)**y)*stieltjes(x)*(x-(y-1))**(y-2))/(fac(x-(y-2))*fac(y-2))) return terms f = lambda x: x**(1/x) int01 = quad(f, [0,1]) limit = sum(limgen(60)) + 1.5 - stieltjes(0) - int01 print(limit)
Comments