cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A350677 a(n) is the sum of the numbers k < n such that a(k) AND n = 0 (where AND denotes the bitwise AND operator).

Original entry on oeis.org

0, 0, 1, 1, 6, 1, 11, 1, 22, 13, 18, 1, 39, 11, 29, 1, 88, 5, 70, 1, 82, 1, 84, 1, 158, 23, 124, 1, 134, 1, 163, 1, 428, 151, 272, 73, 328, 117, 315, 87, 452, 185, 307, 97, 258, 109, 228, 35, 444, 171, 331, 77, 378, 81, 265, 37, 345, 135, 251, 41, 238, 45, 194
Offset: 0

Views

Author

Rémy Sigrist, Feb 25 2022

Keywords

Comments

The definition is recursive: a(n) depends on prior terms (a(0), ..., a(n-1)); a(0) = a(1) = 0 correspond to empty sums.

Examples

			The first terms, alongside the corresponding k's, are:
  n   a(n)  k's
  --  ----  --------------------------
   0     0  {}
   1     0  {0}
   2     1  {0, 1}
   3     1  {0, 1}
   4     6  {0, 1, 2, 3}
   5     1  {0, 1}
   6    11  {0, 1, 2, 3, 5}
   7     1  {0, 1}
   8    22  {0, 1, 2, 3, 4, 5, 7}
   9    13  {0, 1, 4, 8}
  10    18  {0, 1, 2, 3, 5, 7}
  11     1  {0, 1}
  12    39  {0, 1, 2, 3, 5, 7, 10, 11}
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; add(
         `if`(Bits[And](n, a(j))=0, j, 0), j=0..n-1)
        end:
    seq(a(n), n=0..80);  # Alois P. Heinz, Feb 28 2022
  • PARI
    for (n=1, #a=vector(63), print1 (a[n]=sum(k=1, n-1, if (bitand(a[k], n-1)==0, k-1, 0))", "))

A351887 a(n) is the number of k < n such that a(k) AND n = a(k) (where AND denotes the bitwise AND operator).

Original entry on oeis.org

0, 1, 1, 3, 1, 4, 2, 7, 1, 5, 2, 8, 3, 8, 6, 15, 1, 6, 3, 11, 2, 8, 7, 18, 4, 9, 8, 19, 7, 14, 14, 31, 1, 7, 4, 13, 4, 12, 10, 24, 5, 12, 9, 21, 11, 22, 19, 40, 1, 8, 5, 17, 5, 18, 13, 35, 8, 19, 15, 34, 15, 32, 28, 63, 1, 9, 4, 15, 6, 18, 12, 31, 7, 18, 11
Offset: 0

Views

Author

Rémy Sigrist, Feb 23 2022

Keywords

Comments

The definition is recursive: a(n) depends on prior terms (a(0), ..., a(n-1)); a(0) = 0 corresponds to an empty sum.

Examples

			The first terms, alongside the corresponding k's, are:
  n   a(n)  k's
  --  ----  ------------------------
   0     0  {}
   1     1  {0}
   2     1  {0}
   3     3  {0, 1, 2}
   4     1  {0}
   5     4  {0, 1, 2, 4}
   6     2  {0, 5}
   7     7  {0, 1, 2, 3, 4, 5, 6}
   8     1  {0}
   9     5  {0, 1, 2, 4, 8}
  10     2  {0, 6}
  11     8  {0, 1, 2, 3, 4, 6, 8, 10}
  12     3  {0, 5, 11}
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; add(
         `if`(Bits[And](n, a(j))=a(j), 1, 0), j=0..n-1)
        end:
    seq(a(n), n=0..80);  # Alois P. Heinz, Feb 28 2022
  • PARI
    for (n=1, #a=vector(75), print1 (a[n]=sum(k=1, n-1, bitand(a[k], n-1)==a[k])", "))
    
  • Python
    a = []
    [a.append(sum(a[k] & n == a[k] for k in range(n))) for n in range(75)]
    print(a) # Michael S. Branicky, Feb 24 2022
Showing 1-2 of 2 results.