cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A351921 a(n) is the smallest nonzero number k such that gcd(prime(1)^k + 1, prime(2)^k + 1, ..., prime(n)^k + 1) > 1 and gcd(prime(1)^k + 1, prime(2)^k + 1, ..., prime(n+1)^k + 1) = 1.

Original entry on oeis.org

2, 26, 21, 86, 33, 1238, 4401, 4586, 16161, 18561, 81, 37046, 85478, 180146, 339866
Offset: 2

Views

Author

Gleb Ivanov, Feb 25 2022

Keywords

Comments

Apparently, a(n) = (A307965(n+1) + 1)/2 - 1 for n>=3. - Hugo Pfoertner, Mar 02 2022

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{k = 1, p = Prime[Range[n + 1]]}, While[GCD @@ (Most[p]^k + 1) == 1 || GCD @@ (p^k + 1) > 1, k++]; k]; Array[a, 10, 2] (* Amiram Eldar, Feb 26 2022 *)
  • PARI
    isok(k, n) = my(v = vector(n+1, i, prime(i)^k+1)); (gcd(v) == 1) && (gcd(Vec(v, n)) != 1);
    a(n) = my(k=1); while (!isok(k, n), k++); k; \\ Michel Marcus, Mar 18 2022
  • Python
    from sympy import sieve
    from math import gcd
    from functools import reduce
    sieve.extend_to_no(50)
    pr = list(sieve._list)
    terms = [0]*100
    for i in range(2, 85478+1):
        k,g,len_f = 1,2,0
        while g != 1:
            k += 1
            len_f += 1
            g = reduce(gcd, [t**i + 1 for t in pr[:k]])
        if len_f > 1 and terms[len_f] == 0:
            terms[len_f] = i
    print(terms[2:15])
    

Extensions

a(15)-a(16) from Jon E. Schoenfield, Mar 01 2022