cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A351972 a(n) = 1 + Sum_{k=0..floor((n-1)/2)} a(k) * a(n-2*k-1).

Original entry on oeis.org

1, 2, 3, 6, 11, 21, 40, 78, 151, 294, 572, 1115, 2172, 4234, 8252, 16088, 31361, 61140, 119191, 232370, 453010, 883167, 1721768, 3356675, 6543988, 12757830, 24871992, 48489172, 94531974, 184294706, 359291464, 700456240, 1365573493, 2662252082, 5190190005
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 26 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = 1 + Sum[a[k] a[n - 2 k - 1], {k, 0, Floor[(n - 1)/2]}]; Table[a[n], {n, 0, 34}]
    nmax = 34; A[] = 0; Do[A[x] = 1/((1 - x) (1 - x A[x^2])) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = 1 / ((1 - x) * (1 - x * A(x^2))).

A367694 G.f. A(x) satisfies A(x) = 1 / ((1 + x) * (1 - x * A(x^4))).

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 6, 8, 10, 13, 16, 20, 24, 29, 35, 43, 53, 66, 82, 102, 126, 155, 190, 233, 286, 352, 435, 537, 664, 819, 1011, 1244, 1532, 1884, 2322, 2860, 3528, 4349, 5366, 6614, 8154, 10044, 12377, 15247, 18791, 23156, 28546
Offset: 0

Views

Author

Seiichi Manyama, Nov 27 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=(-1)^i+sum(j=0, (i-1)\4, v[j+1]*v[i-4*j])); v;

Formula

a(n) = (-1)^n + Sum_{k=0..floor((n-1)/4)} a(k) * a(n-1-4*k).

A367693 G.f. A(x) satisfies A(x) = 1 / ((1 + x) * (1 - x * A(x^3))).

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 1, 2, 2, 3, 3, 4, 5, 7, 9, 12, 15, 19, 24, 31, 40, 53, 68, 88, 113, 145, 186, 241, 311, 402, 519, 669, 861, 1110, 1431, 1846, 2382, 3073, 3962, 5109, 6586, 8492, 10952, 14125, 18216, 23493, 30294, 39063, 50373, 64959, 83769, 108030, 139314
Offset: 0

Views

Author

Seiichi Manyama, Nov 27 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=(-1)^i+sum(j=0, (i-1)\3, v[j+1]*v[i-3*j])); v;

Formula

a(n) = (-1)^n + Sum_{k=0..floor((n-1)/3)} a(k) * a(n-1-3*k).

A367716 G.f. A(x) satisfies A(x) = 1 / ((1 + x) * (1 - x * (1 + x) * A(x^2))).

Original entry on oeis.org

1, 0, 2, 1, 4, 6, 13, 23, 44, 82, 154, 292, 547, 1036, 1943, 3672, 6900, 13022, 24498, 46194, 86958, 163892, 308624, 581532, 1095275, 2063534, 3886876, 7322523, 13793363, 25984580, 48948062, 92209073, 173699564, 327214934, 616397498, 1161163428, 2187371054
Offset: 0

Views

Author

Seiichi Manyama, Nov 28 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=(-1)^i+sum(j=0, i-1, v[j\2+1]*v[i-j])); v;

Formula

a(n) = (-1)^n + Sum_{k=0..n-1} a(floor(k/2)) * a(n-1-k).
Showing 1-4 of 4 results.