A351979 Numbers whose prime factorization has all odd prime indices and all even prime exponents.
1, 4, 16, 25, 64, 100, 121, 256, 289, 400, 484, 529, 625, 961, 1024, 1156, 1600, 1681, 1936, 2116, 2209, 2500, 3025, 3481, 3844, 4096, 4489, 4624, 5329, 6400, 6724, 6889, 7225, 7744, 8464, 8836, 9409, 10000, 10609, 11881, 12100, 13225, 13924, 14641, 15376
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 1: 1 4: prime(1)^2 16: prime(1)^4 25: prime(3)^2 64: prime(1)^6 100: prime(1)^2 prime(3)^2 121: prime(5)^2 256: prime(1)^8 289: prime(7)^2 400: prime(1)^4 prime(3)^2 484: prime(1)^2 prime(5)^2 529: prime(9)^2 625: prime(3)^4 961: prime(11)^2 1024: prime(1)^10 1156: prime(1)^2 prime(7)^2 1600: prime(1)^6 prime(3)^2 1681: prime(13)^2 1936: prime(1)^4 prime(5)^2
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
The distinct prime factors of terms all come from A031368.
Programs
-
Mathematica
Select[Range[1000],#==1||And@@OddQ/@PrimePi/@First/@FactorInteger[#]&&And@@EvenQ/@Last/@FactorInteger[#]&]
-
Python
from sympy import factorint, primepi def ok(n): return all(primepi(p)%2==1 and e%2==0 for p, e in factorint(n).items()) print([k for k in range(15500) if ok(k)]) # Michael S. Branicky, Mar 12 2022
Comments