A352142 Numbers whose prime factorization has all odd indices and all odd exponents.
1, 2, 5, 8, 10, 11, 17, 22, 23, 31, 32, 34, 40, 41, 46, 47, 55, 59, 62, 67, 73, 82, 83, 85, 88, 94, 97, 103, 109, 110, 115, 118, 125, 127, 128, 134, 136, 137, 146, 149, 155, 157, 160, 166, 167, 170, 179, 184, 187, 191, 194, 197, 205, 206, 211, 218, 227, 230
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 1 = 1 2 = prime(1) 5 = prime(3) 8 = prime(1)^3 10 = prime(1) prime(3) 11 = prime(5) 17 = prime(7) 22 = prime(1) prime(5) 23 = prime(9) 31 = prime(11) 32 = prime(1)^5 34 = prime(1) prime(7) 40 = prime(1)^3 prime(3)
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[100],#==1||And@@OddQ/@PrimePi/@First/@FactorInteger[#]&&And@@OddQ/@Last/@FactorInteger[#]&]
-
Python
from itertools import count, islice from sympy import primepi, factorint def A352142_gen(startvalue=1): # generator of terms >= startvalue return filter(lambda k:all(map(lambda x:x[1]%2 and primepi(x[0])%2, factorint(k).items())),count(max(startvalue,1))) A352142_list = list(islice(A352142_gen(),30)) # Chai Wah Wu, Mar 18 2022
Comments