cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A352014 a(n) = Sum_{p|n, p prime} (-1)^(n/p+1) * (n-1)!/(p-1)!.

Original entry on oeis.org

0, 1, 1, -6, 1, 60, 1, -5040, 20160, 347760, 1, -59875200, 1, 6218372160, 47221574400, -1307674368000, 1, 177843714048000, 1, -126713646259200000, 1219830034655232000, 51090928092415411200, 1, -38778025108327464960000, 25852016738884976640000
Offset: 1

Views

Author

Seiichi Manyama, Feb 28 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(-1)^(n/p + 1)*(n - 1)!/(p - 1)!, {p, FactorInteger[n][[;; , 1]]}]; a[1] = 0; Array[a, 25] (* Amiram Eldar, Oct 04 2023 *)
  • PARI
    a(n) = sumdiv(n, d, isprime(d)*(-1)^(n/d+1)*(n-1)!/(d-1)!);
    
  • PARI
    my(N=40, x='x+O('x^N)); concat(0, Vec(serlaplace(sum(k=1, N, isprime(k)*log(1+x^k)/k!))))

Formula

E.g.f.: Sum_{p prime} log(1+x^p)/p!.

A352004 Expansion of e.g.f. Product_{k>=1} 1/(1 - x^prime(k))^(1/prime(k)!).

Original entry on oeis.org

1, 0, 1, 1, 9, 11, 295, 337, 13041, 45550, 1043211, 3359786, 150500053, 440947300, 23238057921, 145733451241, 5097210717873, 29028404123105, 1710073810205317, 8663532297784519, 574604164708374861, 5108822296820280256, 246335435270285805885
Offset: 0

Views

Author

Seiichi Manyama, Feb 28 2022

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(1/prod(k=1, N, (1-x^k)^(isprime(k)/k!))))
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(sum(k=1, N, sumdiv(k, d, isprime(d)*(k-1)!/(d-1)!)*x^k/k!))))

Formula

E.g.f.: exp( Sum_{k>=1} A352012(k)*x^k/k! ) where A352012(k) = Sum_{p|k, p prime} (k-1)!/(p-1)!.

A352058 a(n) = Sum_{p|n, p prime} n!/(p!*(n/p)!).

Original entry on oeis.org

0, 1, 1, 6, 1, 120, 1, 840, 10080, 30240, 1, 3659040, 1, 17297280, 3632428800, 259459200, 1, 1490852563200, 1, 845092863014400, 3379030566912000, 28158588057600, 1, 2565331847811532800, 1077167364120207360000, 64764752532480000, 5001134190558105600000
Offset: 1

Views

Author

Seiichi Manyama, Mar 02 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 0; a[n_] := Plus @@ (n!/((p=FactorInteger[n][[;;,1]])!*(n/p)!)); Array[a, 30] (* Amiram Eldar, Mar 02 2022 *)
  • PARI
    a(n) = my(f=factor(n)); sum(k=1, #f~, n!/(f[k, 1]!*(n/f[k, 1])!));
    
  • PARI
    my(N=40, x='x+O('x^N)); concat(0, Vec(serlaplace(sum(k=1, N, isprime(k)*(exp(x^k)-1)/k!))))

Formula

E.g.f.: Sum_{p prime} (exp(x^p) - 1)/p!.
a(n) = 1 if and only if n is prime.

A352059 a(n) = Sum_{p|n, p prime} (n-1)!/(n/p-1)!.

Original entry on oeis.org

0, 1, 2, 6, 24, 180, 720, 840, 20160, 378000, 3628800, 6985440, 479001600, 6235669440, 47221574400, 259459200, 20922789888000, 2972883513600, 6402373705728000, 20274518622758400, 1219830034655232000, 51090956251003468800, 1124000727777607680000
Offset: 1

Views

Author

Seiichi Manyama, Mar 02 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[1] = 0; a[n_] := Plus @@ ((n-1)!/(n/FactorInteger[n][[;;,1]] - 1)!); Array[a, 25] (* Amiram Eldar, Mar 02 2022 *)
  • PARI
    a(n) = my(f=factor(n)); sum(k=1, #f~, (n-1)!/(n/f[k, 1]-1)!);
    
  • PARI
    my(N=40, x='x+O('x^N)); concat(0, Vec(serlaplace(sum(k=1, N, isprime(k)*(exp(x^k)-1)/k))))

Formula

E.g.f.: Sum_{p prime} (exp(x^p) - 1)/p.

A352060 a(n) = (n - 1)! * omega(n), where omega(n) = number of distinct primes dividing n (A001221).

Original entry on oeis.org

0, 1, 2, 6, 24, 240, 720, 5040, 40320, 725760, 3628800, 79833600, 479001600, 12454041600, 174356582400, 1307674368000, 20922789888000, 711374856192000, 6402373705728000, 243290200817664000, 4865804016353280000, 102181884343418880000, 1124000727777607680000
Offset: 1

Views

Author

Seiichi Manyama, Mar 02 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := (n-1)! * PrimeNu[n]; Array[a, 25] (* Amiram Eldar, Mar 02 2022 *)
  • PARI
    a(n) = (n-1)!*omega(n);
    
  • PARI
    my(N=40, x='x+O('x^N)); concat(0, Vec(serlaplace(-sum(k=1, N, isprime(k)*log(1-x^k)/k))))

Formula

E.g.f.: -Sum_{p prime} log(1-x^p)/p.
Showing 1-5 of 5 results.