A352028 a(n) = Product p_{n*i}^e_i if the prime factorization of n is Product p_i^e_i.
1, 3, 13, 49, 47, 481, 107, 6859, 3721, 3277, 257, 121841, 397, 11309, 22261, 7890481, 653, 1390861, 881, 1416521, 78373, 47479, 1279, 157208087, 143641, 92011, 15813251, 7018237, 1889, 14701639, 2293, 38579489651, 309709, 207527, 461939, 2938615681, 3119
Offset: 1
Keywords
Examples
a(1) = 1 because 1 is the empty product. a(2) = 3 = prime(2) = prime(2*1) because 2 = prime(1). a(3) = 13 = prime(6) = prime(3*2) because 3 = prime(2). a(4) = 49 = 7^2 = prime(4)^2 = prime(4*1)^2 because 4 = prime(1)^2.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Maple
a:= n-> mul(ithprime(n*numtheory[pi](i[1]))^i[2], i=ifactors(n)[2]): seq(a(n), n=1..45);
-
PARI
a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1] = prime(n*primepi(f[k,1]))); factorback(f); \\ Michel Marcus, Mar 02 2022
Comments