A352053 Sum of the 7th powers of the divisor complements of the odd proper divisors of n.
0, 128, 2187, 16384, 78125, 280064, 823543, 2097152, 4785156, 10000128, 19487171, 35848192, 62748517, 105413632, 170939687, 268435456, 410338673, 612500096, 893871739, 1280016384, 1801914271, 2494358016, 3404825447, 4588568576, 6103593750, 8031810304, 10465138359
Offset: 1
Examples
a(10) = 10^7 * Sum_{d|10, d<10, d odd} 1/d^7 = 10^7 * (1/1^7 + 1/5^7) = 10000128.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
A352053[n_]:=DivisorSum[n,1/#^7&,#
A352053,50] (* Paolo Xausa, Aug 09 2023 *) a[n_] := DivisorSigma[-7, n/2^IntegerExponent[n, 2]] * n^7 - Mod[n, 2]; Array[a, 100] (* Amiram Eldar, Oct 13 2023 *) -
PARI
a(n) = n^7 * sigma(n >> valuation(n, 2), -7) - n % 2; \\ Amiram Eldar, Oct 13 2023
Formula
a(n) = n^7 * Sum_{d|n, d
G.f.: Sum_{k>=2} k^7 * x^k / (1 - x^(2*k)). - Ilya Gutkovskiy, May 18 2023
From Amiram Eldar, Oct 13 2023: (Start)
Sum_{k=1..n} a(k) = c * n^8 / 8, where c = 255*zeta(8)/256 = 1.000155179... . (End)