A352057 Triangular numbers whose nonzero digits are all the same.
0, 1, 3, 6, 10, 55, 66, 300, 666, 990, 3003, 5050, 10011, 66066, 500500, 600060, 50005000, 5000050000, 500000500000, 50000005000000, 5000000050000000, 500000000500000000, 50000000005000000000, 5000000000050000000000, 500000000000500000000000, 50000000000005000000000000
Offset: 1
Crossrefs
Programs
-
Mathematica
(* Method1 *) NonZeroQ[n_Integer] := n != 0; Select[ Table[n (n + 1)/2, {n, 0, 1000000}], Length[Tally[Select[IntegerDigits[#], NonZeroQ]]] == 1 &] (* Method2 *) Sort[Select[ Flatten[Outer[Times, Table[FromDigits[IntegerDigits[n, 2]], {n, 2^16 - 1}], Range[9]]], IntegerQ[Sqrt[8 # + 1]] &]]
-
PARI
isok(k) = my(d=digits(k*(k+1)/2)); d = select(x->(x!=0), d); #Set(d)<=1; lista(nn) = {for (n=0, nn, if (isok(n), print1(n*(n+1)/2, ", ")););} \\ Michel Marcus, Mar 02 2022
-
Python
from sympy import integer_nthroot from sympy.utilities.iterables import multiset_permutations def istri(n): return integer_nthroot(8*n+1, 2)[1] def zplus1(digits): if digits == 1: yield 0 for d1 in "123456789": digset = "0"*(digits-1) + d1*(digits-1) for mp in multiset_permutations(digset, digits-1): t = int(d1 + "".join(mp)) yield t def afind(maxdigits): for digits in range(1, maxdigits+1): for t in zplus1(digits): if istri(t): print(t, end=", ") afind(22) # Michael S. Branicky, Mar 02 2022
Extensions
a(24)-a(25) from Michael S. Branicky, Mar 02 2022
Comments