A352780 Square array A(n,k), n >= 1, k >= 0, read by descending antidiagonals, such that the row product is n and column k contains only (2^k)-th powers of squarefree numbers.
1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 4, 5, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 14
Offset: 1
Examples
The top left corner of the array: n/k | 0 1 2 3 4 5 6 ------+------------------------------ 1 | 1, 1, 1, 1, 1, 1, 1, 2 | 2, 1, 1, 1, 1, 1, 1, 3 | 3, 1, 1, 1, 1, 1, 1, 4 | 1, 4, 1, 1, 1, 1, 1, 5 | 5, 1, 1, 1, 1, 1, 1, 6 | 6, 1, 1, 1, 1, 1, 1, 7 | 7, 1, 1, 1, 1, 1, 1, 8 | 2, 4, 1, 1, 1, 1, 1, 9 | 1, 9, 1, 1, 1, 1, 1, 10 | 10, 1, 1, 1, 1, 1, 1, 11 | 11, 1, 1, 1, 1, 1, 1, 12 | 3, 4, 1, 1, 1, 1, 1, 13 | 13, 1, 1, 1, 1, 1, 1, 14 | 14, 1, 1, 1, 1, 1, 1, 15 | 15, 1, 1, 1, 1, 1, 1, 16 | 1, 1, 16, 1, 1, 1, 1, 17 | 17, 1, 1, 1, 1, 1, 1, 18 | 2, 9, 1, 1, 1, 1, 1, 19 | 19, 1, 1, 1, 1, 1, 1, 20 | 5, 4, 1, 1, 1, 1, 1,
Links
- Antti Karttunen, Table of n, a(n) for n = 1..33153; the first 257 antidiagonals
Crossrefs
Range of values: {1} U A340682 (whole table), A005117 (column 0), A062503 (column 1), {1} U A113849 (column 2).
Row numbers of rows:
- with a 1 in column 0: A000290\{0};
- with a 1 in column 1: A252895;
- with a 1 in column 0, but not in column 1: A030140;
- where every 1 is followed by another 1: A337533;
- with 1's in all even columns: A366243;
- with 1's in all odd columns: A366242;
- where every term has an even number of distinct prime factors: A268390;
- where every term is a power of a prime: A268375;
- where the terms are pairwise coprime: A138302;
- where the last nonunit term is coprime to the earlier terms: A369938;
- where the last nonunit term is a power of 2: A335738.
Comments