A352105 Numbers whose maximal tribonacci representation (A352103) is palindromic.
0, 1, 3, 5, 7, 8, 14, 18, 23, 27, 36, 40, 51, 52, 62, 69, 78, 88, 95, 102, 110, 130, 148, 156, 176, 181, 194, 211, 229, 242, 246, 264, 277, 294, 312, 325, 326, 363, 397, 411, 448, 463, 477, 514, 548, 562, 599, 617, 650, 674, 682, 715, 739, 770, 803, 827, 838, 862
Offset: 1
Examples
The first 10 terms are: n a(n) A352103(a(n)) -- ---- ------------- 1 0 0 2 1 1 3 3 11 4 5 101 5 7 111 6 8 1001 7 14 1111 8 18 10101 9 23 11011 10 27 11111
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; trib[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; IntegerDigits[Total[2^(s - 1)], 2]]; q[n_] := Module[{v = trib[n]}, nv = Length[v]; i = 1; While[i <= nv - 3, If[v[[i ;; i + 3]] == {1, 0, 0, 0}, v[[i ;; i + 3]] = {0, 1, 1, 1}; If[i > 3, i -= 4]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, True, PalindromeQ[FromDigits[v[[i[[1, 1]] ;; -1]]]]]]; Select[Range[0, 1000], q]
Comments