cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A352089 Tribonacci-Niven numbers: numbers that are divisible by the number of terms in their minimal (or greedy) representation in terms of the tribonacci numbers (A278038).

Original entry on oeis.org

1, 2, 4, 6, 7, 8, 12, 13, 14, 18, 20, 21, 24, 26, 27, 28, 30, 33, 36, 39, 40, 44, 46, 48, 56, 60, 68, 69, 72, 75, 76, 80, 81, 82, 84, 87, 88, 90, 94, 96, 100, 108, 115, 116, 120, 126, 128, 129, 132, 135, 136, 138, 140, 149, 150, 156, 162, 168, 174, 176, 177, 180
Offset: 1

Views

Author

Amiram Eldar, Mar 04 2022

Keywords

Comments

Numbers k such that A278043(k) | k.
The positive tribonacci numbers (A000073) are all terms.
If k = A000073(A042964(m)) is an odd tribonacci number, then k+1 is a term.
Ray (2005) and Ray and Cooper (2006) called these numbers "3-Zeckendorf Niven numbers" and proved that their asymptotic density is 0. - Amiram Eldar, Sep 06 2024

Examples

			6 is a term since its minimal tribonacci representation, A278038(6) = 110, has A278043(6) = 2 1's and 6 is divisible by 2.
		

References

  • Andrew B. Ray, On the natural density of the k-Zeckendorf Niven numbers, Ph.D. dissertation, Central Missouri State University, 2005.

Crossrefs

Programs

  • Mathematica
    t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; q[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; Divisible[n, DigitCount[Total[2^(s - 1)], 2, 1]]]; Select[Range[180], q]

A352090 Numbers k such that k and k+1 are both tribonacci-Niven numbers (A352089).

Original entry on oeis.org

1, 6, 7, 12, 13, 20, 26, 27, 39, 68, 75, 80, 81, 87, 115, 128, 135, 149, 176, 184, 185, 195, 204, 215, 224, 230, 236, 243, 264, 278, 284, 291, 344, 364, 399, 447, 506, 507, 519, 548, 555, 560, 575, 595, 615, 635, 656, 664, 665, 684, 704, 725, 744, 777, 804, 824
Offset: 1

Views

Author

Amiram Eldar, Mar 04 2022

Keywords

Comments

Numbers k such that A278043(k) | k and A278043(k+1) | k+1.
The odd tribonacci numbers, A000073(A042964(m)), are all terms.

Examples

			6 is a term since 6 and 7 are both tribonacci-Niven numbers: the minimal tribonacci representation of 6, A278038(6) = 110, has 2 1's and 6 is divisible by 2, and the minimal tribonacci representation of 7, A278038(7) = 1000, has one 1 and 7 is divisible by 1.
		

Crossrefs

Programs

  • Mathematica
    t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; q[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; Divisible[n, DigitCount[Total[2^(s - 1)], 2, 1]]]; Select[Range[1000], q[#] && q[# + 1] &]

A352092 Starts of runs of 4 consecutive tribonacci-Niven numbers (A352089).

Original entry on oeis.org

1602, 218349, 296469, 1213749, 1291869, 1896630, 1952070, 2153709, 2399550, 3149109, 3753870, 3809310, 3983229, 4226208, 4256790, 4449288, 4711482, 5707897, 5727708, 6141750, 6589230, 6969429, 7205757, 7229208, 7276143, 7292943, 7454710, 7752588, 7937109, 8877069
Offset: 1

Views

Author

Amiram Eldar, Mar 04 2022

Keywords

Comments

Conjecture: There are no runs of 5 consecutive tribonacci-Niven numbers (checked up to 10^10).

Examples

			1602 is a term since 1602, 1603, 1604 and 1605 are all divisible by the number of terms in their minimal tribonacci representation:
     k    A278038(k)  A278043(k)  k/A278043(k)
  --------------------------------------------
  1602  110100011010           6           267
  1603  110100011011           7           229
  1604  110100100000           4           401
  1605  110100100001           5           321
		

Crossrefs

Subsequence of A352089, A352090 and A352091.

Programs

  • Mathematica
    t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; triboNivenQ[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; Divisible[n, DigitCount[Total[2^(s - 1)], 2, 1]]]; seq[count_, nConsec_] := Module[{tri = triboNivenQ /@ Range[nConsec], s = {}, c = 0, k = nConsec + 1}, While[c < count, If[And @@ tri, c++; AppendTo[s, k - nConsec]]; tri = Join[Rest[tri], {triboNivenQ[k]}]; k++]; s]; seq[6, 4]

A352109 Starts of runs of 3 consecutive lazy-tribonacci-Niven numbers (A352107).

Original entry on oeis.org

175, 1183, 2259, 5290, 12969, 21130, 51820, 70629, 78090, 79540, 81818, 129648, 160224, 169234, 180908, 228240, 238574, 249494, 278628, 332891, 376335, 383866, 398650, 399644, 454090, 550380, 565200, 683448, 683604, 694274, 728895, 754390, 782110, 809830, 837550
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2022

Keywords

Examples

			175 is a term since 175, 176 and 177 are all divisible by the number of terms in their maximal tribonacci representation:
    k  A352103(k)  A352104(k)  k/A352104(k)
  ---  ----------  ----------  ------------
  175    11111110           7            25
  176    11111111           8            22
  177   100100100           3            59
		

Crossrefs

Subsequence of A352107 and A352108.
A352110 is a subsequence.

Programs

  • Mathematica
    t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; trib[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; IntegerDigits[Total[2^(s - 1)], 2]]; lazyTriboNivenQ[n_] := Module[{v = trib[n]}, nv = Length[v]; i = 1; While[i <= nv - 3, If[v[[i ;; i + 3]] == {1, 0, 0, 0}, v[[i ;; i + 3]] = {0, 1, 1, 1}; If[i > 3, i -= 4]]; i++]; i = Position[v, ?(# > 0 &)]; If[i == {}, False, Divisible[n, Total[v[[i[[1, 1]] ;; -1]]]]]]; seq[count, nConsec_] := Module[{tri = lazyTriboNivenQ /@ Range[nConsec], s = {}, c = 0, k = nConsec + 1}, While[c < count, If[And @@ tri, c++; AppendTo[s, k - nConsec]]; tri = Join[Rest[tri], {lazyTriboNivenQ[k]}]; k++]; s]; seq[30, 3]

A352322 Starts of runs of 3 consecutive Pell-Niven numbers (A352320).

Original entry on oeis.org

4, 28, 110, 168, 984, 1024, 3123, 3514, 5740, 6783, 6923, 8584, 12664, 16744, 18160, 19670, 23190, 23470, 24030, 34503, 34643, 36304, 40384, 45880, 47390, 50910, 51190, 51750, 57607, 61640, 68104, 73600, 78403, 78630, 78910, 79470, 86674, 89360, 95824, 101320
Offset: 1

Views

Author

Amiram Eldar, Mar 12 2022

Keywords

Comments

Conjecture: There are no runs of 4 consecutive Pell-Niven numbers (checked up to 2*10^8).

Examples

			4 is a term since 4, 5 and 6 are all Pell-Niven numbers: the minimal Pell representation of 4, A317204(20) = 20, has the sum of digits 2+0 = 2 and 4 is divisible by 2, the minimal Pell representation of 5, A317204(5) = 100, has the sum of digits 1+0+0 = 1 and 5 is divisible by 1, and the minimal Pell representation of 6, A317204(6) = 101, has the sum of digits 1+0+1 = 2 and 6 is divisible by 2.
		

Crossrefs

A182190 \ {0} is a subsequence.
Subsequence of A352320 and A352321.

Programs

  • Mathematica
    pell[1] = 1; pell[2] = 2; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; pellNivenQ[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[pell[k] <= m, k++]; k--; AppendTo[s, k]; m -= pell[k]; k = 1]; Divisible[n, Plus @@ IntegerDigits[Total[3^(s - 1)], 3]]]; seq[count_, nConsec_] := Module[{pn = pellNivenQ /@ Range[nConsec], s = {}, c = 0, k = nConsec + 1}, While[c < count, If[And @@ pn, c++; AppendTo[s, k - nConsec]]; pn = Join[Rest[pn], {pellNivenQ[k]}]; k++]; s]; seq[30, 3]

A352344 Starts of runs of 3 consecutive lazy-Pell-Niven numbers (A352342).

Original entry on oeis.org

2196, 2650, 5784, 17459, 28950, 57134, 112878, 124506, 147078, 162809, 169694, 191538, 210494, 218654, 223344, 223459, 230894, 239360, 258740, 277455, 278900, 285615, 289695, 291328, 291858, 295408, 311524, 314658, 324734, 332894, 335179, 341900, 347718, 362880
Offset: 1

Views

Author

Amiram Eldar, Mar 12 2022

Keywords

Examples

			2196 is a term since 2196, 2197 and 2198 are all divisible by the sum of the digits in their maximal Pell representation:
     k  A352339(k)  A352340(k)  k/A352340(k)
  ----  ----------  ----------  ------------
  2196   121222020          12           183
  2197   121222021          13           169
  2198   121222022          14           157
		

Crossrefs

Subsequence of A352342 and A352343.
A352345 is a subsequence.

Programs

  • Mathematica
    pell[1] = 1; pell[2] = 2; pell[n_] := pell[n] = 2*pell[n - 1] + pell[n - 2]; pellp[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[pell[k] <= m, k++]; k--; AppendTo[s, k]; m -= pell[k]; k = 1]; IntegerDigits[Total[3^(s - 1)], 3]]; lazyPellNivenQ[n_] := Module[{v = pellp[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] > 0 && v[[i + 1]] == 0 && v[[i + 2]] < 2, v[[i ;; i + 2]] += {-1, 2, 1}; If[i > 2, i -= 3]]; i++]; i = Position[v, ?(# > 0 &)]; Divisible[n, Plus @@ v[[i[[1, 1]] ;; -1]]]]; seq[count, nConsec_] := Module[{lpn = lazyPellNivenQ /@ Range[nConsec], s = {}, c = 0, k = nConsec + 1}, While[c < count, If[And @@ lpn, c++; AppendTo[s, k - nConsec]]; lpn = Join[Rest[lpn], {lazyPellNivenQ[k]}]; k++]; s]; seq[30, 3]

A352510 Starts of runs of 3 consecutive Catalan-Niven numbers (A352508).

Original entry on oeis.org

4, 55, 144, 145, 511, 2943, 6950, 7734, 9470, 9750, 15630, 15631, 35034, 35464, 41590, 41986, 64735, 68523, 68870, 77510, 81150, 90958, 106063, 118264, 119043, 135970, 139403, 163188, 164862, 164863, 171346, 181510, 200759, 202761, 202762, 208024, 209230, 209586
Offset: 1

Views

Author

Amiram Eldar, Mar 19 2022

Keywords

Examples

			4 is a term since 4, 5 and 6 are all Catalan-Niven numbers: the Catalan representation of 4, A014418(20) = 20, has the sum of digits 2+0 = 2 and 4 is divisible by 2, the Catalan representation of 5, A014418(5) = 100, has the sum of digits 1+0+0 = 1 and 5 is divisible by 1, and the Catalan representation of 6, A014418(6) = 101, has the sum of digits 1+0+1 = 2 and 6 is divisible by 2.
		

Crossrefs

Programs

  • Mathematica
    c[n_] := c[n] = CatalanNumber[n]; catNivQ[n_] := Module[{s = {}, m = n, i}, While[m > 0, i = 1; While[c[i] <= m, i++]; i--; m -= c[i]; AppendTo[s, i]]; Divisible[n, Plus @@ IntegerDigits[Total[4^(s - 1)], 4]]]; seq[count_, nConsec_] := Module[{cn = catNivQ /@ Range[nConsec], s = {}, c = 0, k = nConsec + 1}, While[c < count, If[And @@ cn, c++; AppendTo[s, k - nConsec]]; cn = Join[Rest[cn], {catNivQ[k]}]; k++]; s]; seq[30, 3]

A364218 Starts of runs of 3 consecutive integers that are Jacobsthal-Niven numbers (A364216).

Original entry on oeis.org

1, 2, 14, 42, 43, 44, 86, 182, 544, 686, 846, 854, 1014, 1375, 1384, 1504, 1624, 2105, 2190, 2315, 2358, 2731, 2732, 2763, 2774, 2824, 3243, 3534, 3702, 4205, 4878, 5046, 5408, 5462, 5643, 5663, 6222, 6390, 6935, 7566, 7734, 7928, 8224, 8704, 8910, 9078, 9368
Offset: 1

Views

Author

Amiram Eldar, Jul 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    consecJacobsthalNiven[10^4, 3] (* using the function from A364217 *)
  • PARI
    lista(10^4, 3) \\ using the function from A364217

A364381 Starts of runs of 3 consecutive integers that are greedy Jacobsthal-Niven numbers (A364379).

Original entry on oeis.org

1, 2, 3, 4, 8, 9, 10, 14, 20, 26, 42, 43, 44, 84, 85, 86, 104, 115, 170, 182, 304, 344, 362, 414, 544, 682, 686, 692, 784, 854, 1014, 1370, 1384, 1504, 1673, 1685, 1706, 2224, 2315, 2358, 2730, 2731, 2732, 2763, 2774, 3243, 3594, 3702, 4144, 4688, 4864, 5046, 5408
Offset: 1

Views

Author

Amiram Eldar, Jul 21 2023

Keywords

Crossrefs

Programs

  • Mathematica
    consecGreedyJN[5500, 3] (* using the function consecGreedyJN from A364380 *)
  • PARI
    lista(5500, 3) \\ using the function lista from A364380

A364008 Starts of runs of 3 consecutive integers that are Wythoff-Niven numbers (A364006).

Original entry on oeis.org

6, 54, 374, 375, 978, 979, 14695, 15694, 17708, 17709, 34990, 36476, 38374, 41699, 45304, 75944, 85149, 93104, 113463, 114560, 116170, 117754, 120274, 121371, 203983, 221804, 250118, 259819, 270214, 270477, 275526, 276912, 288125, 297241, 297515, 299824, 309440
Offset: 1

Views

Author

Amiram Eldar, Jul 01 2023

Keywords

Crossrefs

Programs

  • Mathematica
    seq[10, 3] (* generates the first 10 terms using the function seq[count, nConsec] from A364007 *)
Showing 1-10 of 11 results. Next