cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A352116 Partial sums of the odd triangular numbers (A014493).

Original entry on oeis.org

1, 4, 19, 40, 85, 140, 231, 336, 489, 660, 891, 1144, 1469, 1820, 2255, 2720, 3281, 3876, 4579, 5320, 6181, 7084, 8119, 9200, 10425, 11700, 13131, 14616, 16269, 17980, 19871, 21824, 23969, 26180, 28595, 31080, 33781, 36556, 39559, 42640, 45961, 49364, 53019, 56760, 60765
Offset: 1

Views

Author

David James Sycamore, Mar 05 2022

Keywords

Examples

			a(1) = 1 because 1 is the first odd term in A000027.
a(2) = 1 + 3 = 4, the sum of the first two odd terms in A000027, and so on.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, 1, -4, 1, 2, -1}, {1, 4, 19, 40, 85, 140}, 50] (* Amiram Eldar, Mar 05 2022 *)
  • PARI
    to(n) = (2*n-1)*(2*n-1-(-1)^n)/2; \\ A014493
    a(n) = sum(k=1, n, to(k)); \\ Michel Marcus, Mar 05 2022
    
  • Python
    def A352116(n): return n*((n-1)<<1)*(n+1)//3 + n*(n&1) # Chai Wah Wu, Feb 12 2023

Formula

a(n) = Sum_{k=1..n} A014493(k) = Sum_{k=1..n} (2*k-1)(2*k-1-(-1)^k)/2.
a(n) = A352115(n-1) + (-1)^(n-1)*n.
a(n) = A000447(n) - A352115(n-1).
From Stefano Spezia, Mar 05 2022: (Start)
a(n) = n*(4*n^2 - 1 - 3*(-1)^n)/6.
G.f.: x*(1 + 2*x + 10*x^2 + 2*x^3 + x^4)/((1 - x)^4*(1 + x)^2). (End)

Extensions

More terms from Michel Marcus, Mar 05 2022
Showing 1-1 of 1 results.