A352159 Numbers m such that the smallest digit in the decimal expansion of 1/m is 5, ignoring leading and trailing 0's.
2, 18, 20, 132, 148, 180, 200, 1320, 1480, 1800, 2000, 13008, 13200, 14544, 14800, 18000, 20000, 130080, 132000, 145440, 148000, 180000, 200000, 1300800, 1320000, 1454400, 1480000, 1734375, 1800000, 2000000, 11521152, 12890625, 13008000, 13200000, 14544000, 14800000
Offset: 1
Examples
m = 148 is a term since 1/148 = 0.00675675675... and the smallest digit after the leading 0's is 5. m = 1320 is a term since 1/1320 = 0.000075757575... and the smallest digit after the leading 0's is 5.
Crossrefs
Programs
-
Mathematica
f[n_] := Union[ Flatten[ RealDigits[ 1/n][[1]] ]]; Select[ Range@ 1100, Min@ f@# == 5 &]
-
PARI
is(n) = my(d=#digits(n-1), m=9, r=10^d, x=valuation(n, 2), y=valuation(n, 5)); for(k=1, max(x,y)-d*(n==x=2^x*5^y)+znorder(Mod(10, n/x)), if(5>m=min(m, r\n), return(0)); r=r%n*10); m==5; \\ Jinyuan Wang, Mar 27 2022
-
Python
from itertools import count,islice from sympy import multiplicity,n_order def A352159_gen(startvalue=1): # generator of terms >= startvalue for n in count(max(startvalue,1)): m2, m5 = multiplicity(2,n), multiplicity(5,n) k, m = 10**max(m2,m5), 10**(t := n_order(10,n//2**m2//5**m5))-1 c = k//n s = str(m*k//n-c*m).zfill(t) if s == '0' and min(str(c)) == '5': yield n elif '0' not in s and min(str(c).lstrip('0')+s) == '5': yield n A352159_list = list(islice(A352159_gen(),10)) # Chai Wah Wu, Mar 28 2022
Formula
A352153(a(n)) = 5.
Extensions
More terms from Jinyuan Wang, Mar 27 2022
Comments