A352217 Smallest power of 2 that is one more than a multiple of 2n-1.
2, 4, 16, 8, 64, 1024, 4096, 16, 256, 262144, 64, 2048, 1048576, 262144, 268435456, 32, 1024, 4096, 68719476736, 4096, 1048576, 16384, 4096, 8388608, 2097152, 256, 4503599627370496, 1048576, 262144, 288230376151711744, 1152921504606846976, 64, 4096
Offset: 1
Examples
a(5)=64 because 63 is the smallest number of the form 2^n-1 that's a multiple of 9.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..1661
Programs
-
Maple
a:= n-> 2^`if`(n=1, 1, numtheory[order](2, 2*n-1)): seq(a(n), n=1..50); # Alois P. Heinz, Mar 07 2022
-
Mathematica
Table[2^MultiplicativeOrder[2, 2*n - 1], {n, 1, 33}] (* Amiram Eldar, Mar 08 2022 *)
-
PARI
a(n) = 1 << znorder(Mod(2,2*n-1)); \\ Kevin Ryde, Mar 07 2022
-
Python
def a(n): if n == 1: return 2 p, m = 2, 2*n-1 while p <= m or p % m != 1: p *= 2 return p print([a(n) for n in range(1, 34)]) # Michael S. Branicky, Mar 07 2022
-
Python
from sympy import n_order def a(n): return 2**n_order(2, 2*n-1) print([a(n) for n in range(1, 34)]) # Michael S. Branicky, Mar 07 2022 after Alois P. Heinz
Formula
From Alois P. Heinz, Mar 07 2022: (Start)
a(n) = 2^A002326(n-1).
a(n) = 1 + A165781(n-1)*(2*n-1). (End)
Extensions
a(14) and beyond from Michael S. Branicky, Mar 07 2022
Comments